Predicting Application Memory Allocation Behavior

Project Report
Christopher J. Hazard
North Carolina State University

April 21, 2005

1. Introduction

Computer architecture has always been rapidlyghgn New architectures are
invented, techniques are refined, and new problees to be addressed. Memory
latency has been one of the biggest hurdles recengidvancing the throughput of
computer processors. Processor architecture teias continue to advance, but the
amount of CPU cycles wasted waiting on memory &nlrontinuously climbing.
Because of this, SMT (simultaneous multi-threadaigo known as Hyper-threading),
and CMP (chip multi-processing) are becoming papwih both Intel and AMD
recently releasing CMP processors. Both of thekegiens add processor throughput,
but all virtual processors share the same cachegasing the performance degradation of
cache contention. In general, computer architeagitooking in the direction of
increasing multi-tasking for higher throughput.

Computer security has also been an increasingecon@s our dependency on
computing infrastructure continues to grow, seguekploits will have greater cost.
Buffer overflows, one of the more common exploitscur when erroneous code allows
external data to be written out of its bounds terawxite, damage, and possibly control
the program. Many attacks against the program bealdl be prevented if unused pages
were write-protected.

The project we are working on addresses aspetistimof these issues. The
primary goal of this project is to provide increasecurity without negatively impacting
performance. This goal is achieved by creatingeanory heap server that executes in
parallel on the processor with kernel memory peigds. By allowing the memory
allocations and frees to occur asynchronouslyptbeessor’s capacity is utilized without
creating much cache contention.

Because the memory allocation and freeing is dggmous, a communication
delay is added in the overhead of each memoryatimt. By predicting the size and
times of memory block requests, the memory managesystem can hide the latency of
memory allocation. The more accurately this thread predict requests, the faster the
program will be executed.

For this project, | am aiding Mazen Kharbutli, wisavorking under Professor
Solihin in the ECE department. My role is to detere ways that memory allocation
management actions can be predicted without priomkedge about the programs and
their execution. The work has not yet been phblis so further implementation and
implication details are preferred to not be disserted. With regard to data mining for
memory allocation prediction, such details are niénedess irrelevant.

2. Background

Because of the increased latency for memory dilmes, the memory manager
needs to successfully predict memory allocatiortsiotng in the near future. Some
programs have been found to have high sustaineconyestiocation request rates which
will be difficult for the memory manager to keepwfith. Such cases will require the
memory allocation prediction to be accurate in batbocations to prevent major
slowdown.

It should also be noted that the application sm@éntains a pool of 8 to 16 pre-
allocated memory sizes in reserve. The numbereffjocated chunks may be large;

however two problems arise if the number is togdarThe primary problem is that if the
application requests a new memory size that ismtite memory pool, one of the size
pools must be evicted. The overhead of freeingaghmused memory blocks consumes
time and communication bandwidth from the memoryager. The second problem is
the extra memory required. It is a waste of systesources for a small program to
allocate significant amounts of memory that it widit use.

Freed memory blocks may be added back to theljmeated pools instead of
being sent back to the memory manager to be asynabisly freed. It is the job of the
predictor to make all of these choices. In thiggsal will report on my findings in using
data mining techniques to find insights that wélgus in the construction of this
predictor.

3. Related Work

Surprisingly little work has been done on predigtmemory allocation requests.
Much work has been done in garbage collectionybry little of it is applicable to
standard low-level memory practices. In practprformance bound programs that
have specific memory allocation patterns have eceatistom memory allocators.
However, they often do not outperform the standiaednory allocation algorithms [1].

Zorn et. al did large amounts of work investiggtusing and predicting different
memory allocation usages in terms of the memorgkxdifetime. By using the stack
information as input to an analytic predictor fegeegating heap objects by usage
patterns, Seidel and Zorn were able to decreasefpalis and slightly improve cache
hits [2,3]. In [4], Barrett and Zorn investigateing the predicting lifespan of an
allocated block to designate the memory allocatgahnique and location used to
allocate the memory block. Using this technigheytimprove memory management
performance by predicting lifespan based on thetfan call chain. Grunwald’s work
with Zorn [5] used different memory allocation $é@ies during run-time to optimize
execution speed for a particular application wkéeping unused memory low, based off
application profiles.

Caching initialized objects to reduce initializatioverhead during memory
allocations was investigated by Bonwick [6], buedmot use any predictive modeling.
Chang, et. al investigated the use of a hardwaraanemanagement system using a
bitmapped memory allocator, which requires lingarage overhead for the bitmap with
regard to the size of the memory [7,8]. Wuytackattised decision trees to improve the
throughput and behavior of memory management am-thmigoughput embedded network
devices, however, the decision trees were derinati/cally from knowledge about the
specific data structures used [9].

3.1 Selected Paper Review

In their paper entitled, “Predicting lifetimes igreamically allocated memory”,
Cohn and Singh describe their approach of usingidectrees to tune memory
management systems [10]. By better predicting nmgrlock lifetimes, a memory
manager can decrease CPU usage required for methacgtions, decrease memory
fragmentation, and improve program cache localibeir related work section is a bit
short, but to give the authors some credit, litttgk was being done on memory

management at the time and this paper was cite@dedded in following years in other
important works in memory management.

Following the introduction, the authors describe fisatures selected for use in
their decision tree. Previous work has investigatging program flow analysis to
predict memory lifetimes, but the authors argu¢ ithia not just the program flow and
functions, but rather the parameters; the samditumcalled with different parameters
may behave differently. To take this into accotimjr decision tree’s classification is
based on the top 20 machine words in the stacle alithors find that use of the registers
in the decision tree is insignificant.

In distinguishing short-lived memory blocks frommtpterm blocks from
“permanent” blocks (lasting the duration of prograxecution), the memory manager
can use different strategies optimized for the nrgrbtocks’ lifetime. However, false
positives may be costly, as memory blocks allocati¢idl a mispredicted lifetime may
adversely affect many other allocations. The agtlhssumed false positives and false
negatives to have the same weight for ease of atiaiu

The authors used the OC1 decision tree softwahe trEe evaluation was based
on a cost complexity heuristic, using 90% of thexgles to build the tree and 10% to
prune it. Because the software did not providectpability of using a custom heuristic,
the authors used a boosting technique to includalemmbers of positive and negative
examples by duplicating training examples. Thelrdit use the word boosting, perhaps
because the term was not widely used at that point.

The authors profiled a common set of benchmarkss@ieript, Espresso, Cfrac,
Gawk, Perl, and GCC. These programs were recodaild linked against a slightly
modified version of the standard C library thatareled when specific segments of
memory were allocated and freed, along with thev@@s of stack trace.

The authors then compare the results of OC1 falseive and false negative
rates to that of the only other work done priotiteir paper (by Barrett and Zorn). Cohn
and Singh’s worst results are comparable, but ¢ lesults are far better predictors
(e.g. 25.2% false negatives compared with 1.7% faéggatives). For predicting
permanent memory allocations, their system had geogl performance for 3 of the 4
metrics.

To test the actual performance gained by usingléugsion tree, the authors
implemented a slightly modified version. If a sfieanemory allocation site only
reserved memory for one type of use (short-terng@rm, permanent), the authors used
the specific memory allocation algorithm. If themmory allocation site’s uses were
mixed, the authors used the decision tree to dyecalimichoose which algorithm it would
use. For most of the results, efficiency was iaseel by a small amount. The Cfrac
program, however, performed very poorly during loags due to mispredictions.

In this paper, the authors were the first to appéchine learning or data mining
to memory management. In the past 9 years, viytanal other groups have applied such
methods to lower level memory management (sevens kxtended the methods, but |
have been unable to find any work on this problemtside of higher level garbage
collection techniques). | speculate that it maylbe to the fact that most programs
spend only a small fraction of their execution tipggforming memory management.
Though exceptions do exist, it makes a tough aaselt when many programs would

receive only a small percentage increase in exatgpeed from the added complexity of
a decision tree-based memory manager.

On the other hand, this work does seem somewhamipiete. The authors used
only 6 programs for the initial benchmarking, amdiyaused 3 of them for the
performance analysis. It would have also beemastiang to isolate the time spent in the
malloc and free functions before and after usirmgdécision tree, as that would be a good
indicator as to how their method would work for grams that perform large amounts of
memory allocation.

The authors were also severely limited by the atégl data mining algorithms
and software. They mentioned that they were unablse their own evaluation
mechanisms in the creation of the decision treewald take into account the weights
of false positives and false negatives. Givenihg many new programming languages
and methods instantiate many objects and desteoy trequently, I think that such a
memory allocation predictor may have greater imp>ould be interested in seeing
this work being redone with today’s data mining@ques in today’s environments, to
see if it would yield better results.

3.2 Data Mining Algorithms

The primary data mining algorithm used in this kisrJ48, a C4.5 algorithm
based decision tree classifier implemented in WéKae algorithm attempts to maximize
entropy gain when making each split in the decisiea. C4.5 has been widely used, and
due to its maturity, searching for papers on Céveals that most of the studies
involving it are applying it to other domains. Tgh entropy is used in the C4.5
algorithm, there are a wide variety of successfuflgd interestingness measures to
choose from [11]. Bagging, boosting, and randotiomaehas been studied with C4.5,
showing that boosting gives the best results, vattdomization and bagging giving
similar quality decision trees [12], but bagginghe best method for practical use due to
boosting’s sensitivity to noise. Though | had éavolume of data in this project, | used
bagging by sampling the large data set with replesze. In terms of decision tree
theory, Fiat and Pechyony have recently exploredesthheoretical underpinnings for
optimality [13].

4. Obtaining the Data

4.1 Program Selection

To obtain useful memory allocation patterns, adrebnsideration went into
deciding which programs to profile. The programsstrbe diverse, because profiling ten
programs that fulfill the same role would likelylpshow us a small subset of allocation
patterns. However, the scope of available progrargseatly limited by the processor
simulator on which they will be required to run tmrtain performance evaluations. The
simulator has a very limited implementation of PRSVithout support for networking,
multithreading, or X-Windows. To be useful, pragsamust also have non-trivial
memory allocation patterns. For example, a progsmch allocates a small number of
blocks upon initialization with no further memorjogation would not be affected by
memory allocation latency. The programs need tod®n source as well, so that they
can be later recompiled to run on the processaulator.

The SPEC CPU 2000 benchmarks are a common stafodgmecessor profiling.
Despite the commonality, we only chose a coupliha$se measures, since many of them
do not exhibit the aforementioned characteristitise final list of programs chosen is as
follows:

Name Description

7zip data compression utility that uses a vari¢tyoonpression
algorithms

ammp SPEC CPU 2000 benchmark

bison CFG parser generator, run with the speciinatof a Java language
CFG parser source

diffutils finds differences between text files

espresso logic minimization solver

gawk GNU Awk interpreter

gcc optimizing C/C++ compiler (SPEC CPU 2000 benatkn

gzip data compression utility (SPEC CPU 2000 berarkin

netpbm image format translation library, run togenm still images to a
compressed movie file

perl interpreter for the Perl programming languaga,with a script to
do various text parsing

splint C/C++ static security source analysis tool

4.2 Data Collection

The data were collected by augmenting the stan@ditotary malloc functions to
log every call. The obvious data to log is whetinermemory is being allocated or freed,
as well as the size requested for an allocatiaraddition, we logged the current time as
measured in CPU clock ticks (zero representindgiteememory allocation), allowing us
to see memory allocation timing patterns. We rdedrthe amount of time taken to
perform the memory management task for future pevdoce comparisons. The address
of each memory allocated or freed was logged ak Wélis allows us to find when a
specific block of memory was both allocated anedrevhich would be required for
memory lifetime analysis.

We also recorded the calling address of each mahddree, hoping to be able to
associate particular allocation sizes with cerpairts of the code. After inspecting the
data for many of the programs, | found the calkwigiress attribute to be an unreliable
indicator, which became more obvious after lookimgugh the high level source code.
Many programs use their own small allocation fumtsi that call malloc and perform
safety checks, but many also do not. As commograroming standards and languages
continuously change and call stack analysis canrhequite complex for our
application, we decided that utilizing this measworild not be in our best interests for
universal prediction.

Initially, we intended to use the simulator tolgatcache activity to find access
patterns. Our hope was that the allocator coutdcashe access patterns to predict future
access patterns and allocate memory to increase tdéts. Other commitments on the
part of the project leader forced this data coitecbut of the schedule (they also delayed

my data from being collected for several weeks)hihdsight, the cache access patterns
would have added a great deal of complexity tosgfstem and the analysis, and seems
best suited for future work after a functional systis in order.

5. Analysis
5.1 Constraintson Memory Predictor

The memory system imposes several constrainte#ut affects prediction in a
different manner. One constraint is that all megmeguests less than 16 bytes will be
rounded up to 16 bytes, and all larger requestsoameded up to the next multiple of 8
bytes. This limitation is required for memory alidion efficiency, but also aids data
mining slightly by somewhat discretizing the allah&zes. The system easily allows for
the possibility of using larger memory blocks faraler requests, so if the system
predicts a larger size, they can be used evenoihgur The predictor must be careful not
to do this too often, or with sizes too large, otfise the program will consume more
memory than is required, suffer more page missebpatentially suffer more cache
misses.

A second constraint is that the memory predictostbe careful to not converge;
it must be ergodic. If the memory predictor appbay real-time machine learning
techniques, it must be designed to disregard aaunlold memory allocation patterns.
Programs often have distinct phases. If the meralbogation predictor’s training kept
all of the results since the beginning of the paogyrit may continue to use patterns from
the earlier phase in the later phases. Occasyothadl may be beneficial, but other times
it may cause unreasonable predictions, severetlehimg the performance of the
memory manager.

The last major constraint is timing. To be efifieetthe memory manager must
not use large amounts of processing power and menfary prediction algorithms must
be relatively simple. The memory manager can dffoore complex calculations if it
predicts with reasonable accuracy that it will betreceiving memory allocation requests
for a longer duration.

5.2 Sequential Analysis Attempt

Initially, | sought to break the stream of memoperations into phases, cluster
the phases, and then find patterns that would bedredictors for each given phase type.
To do this, | wrote a Perl script to combine thdlotss and free’s that operated on the
same address into the same memory allocation ewestead of having a separate malloc
and free line, the allocation lines had the meniogks’ lifetimes. This was particularly
helpful because the malloc and free contained dgfgrent information, and the free
events did not contain the blocks’ sizes.

| investigated phase analysis as applied to irudetection systems, child
growth, and low level instruction phases for preoes. Unfortunately, all of the phase
recognition systems | investigated were very lange complex. The complexity worried
me on two fronts: the amount of effort it would ¢ato implement the algorithms and also
the amount of processing the memory manager caomeaaly in predicting memory
allocations. Additionally, all the phase recognizeencountered were able to utilize
higher dimensional data than | had, so | wondebedithe capability to recognize
phases based only on memory allocation times a®g sil spent a bit of time

qualitatively analyzing the data (staring at evgrgph | could come up with), and
eventually decided that | should try another mampsing approach.

5.3 Collapsing Sequential Data

Given that the memory management predictor mugerdacisions based on the
current situation, | decided to investigate collagsach of the points in the time series
into an element that represents everything thaptadictor is likely to know about its
situation. By evaluating heuristics from the pexgjve of every point in the data,
sequential dependencies can be removed, and etzchaiat can be analyzed
independent of the others.

The evaluation heuristics are best guesses attyybed of aggregated measures
that could be useful. All of the aggregated measwurere applied to the memory sizes
after rounding according to the rounding requiretsapecified in section 5.1. The
complete list of metrics | created and evaluateabi$ollows:

Name Description (all timesarein processor cycles)
size Size of the current memory allocation request
previous_size Size of the previous memory allocatemuest
time_since_last_alloc Time since last allocatioay size

time_since_last_eviction In maintaining a leaserdty-used eviction policy in a
cache of the most recently used 8 sizes, thisisitie since
the last eviction was required.

time_size_last_seen Time since a memory allocaéquest of this size was
received

last_free_this_size Time since a memory block efgiven size was last freed
(O if has never been freed)

entropy_of last128 The entropy of last 128 memdpcation requests,

computed with respect to allocation size probabdgit

H(X) = -2 p(x) log p(x),
where p(x) is the probability of the given size ofithe last

128 sizes.

entropy_of last32 Same as entropy_of_last128, thtthe previous 32
memory allocation requests

entropy_of last8 Same as entropy_of_last128, bilt the previous 8
memory allocation requests

count_of last128 Number of memory allocation retgiebthe current size
out of the last 128 requests

count_of last32 Same as count_of last128, butthélprevious 32 memory
allocation requests

count_of last8 Same as count_of last128, but Wwethptrevious 8 memory
allocation requests

time_til_next Time until the next memory allocatigguest will occur -
Used for training and evaluating.

count_of _next128 If the frequency of the currenéss O for the next 128

memory allocation requests, then ‘none’.
If the frequency is <= 1/3 of the 128, then ‘low’.

If the frequency is <= 2/3 of the 128, then ‘medium
If the frequency is > 2/3 of the 128, then ‘high’.
Used for training and evaluating.

These metrics were coded as part of a batch pregsocthat translated the raw
data into both ARFF and CSV files for use in Wehkd &xcel. The batch processor
processed each of the data sets in its entirety jgen profiled application), and wrote out
files with data elements that were sequentiallgpehdent, containing the metrics
mentioned above. Because the count_of nextl28a@umt of last128 metrics needed a
span of 256 entries, several data sets were thoomvat this point because they contained
too few elements (the data sets thrown out ardisted in section 4.1). Ignoring this
data is not problematic for a universal predictecduse applications with few memory
allocation requests will not be noticeably impadbgdhe increased overhead.

The batch preprocessor also sampled the applisatipmandomly choosing 120
of the data points from each of them, totaling 18atx points from the 11 profiled
applications in a single file for experimentatidnwrote the batch processor in Perl for
several reasons: Perl is excellent at text proegsBerl is good for rapid prototyping;
and | am very experienced with the Perl language.

5.4 Initial AnalysisUsing Weka

Earlier in the semester, before | had obtainedlaty, | experimented with both
SAS and Weka. | chose to use Weka for two primm@agons. First, SAS does not have
recent versions of its software available for Appl@S X. And second, Weka was very
easy to learn and very intuitive. The only portidar which | needed to read training
materials was the KnowledgeFlow package. | wotkedugh several training tutorials
with SAS. Though SAS had more features than Wielcnd it comparatively clunky,
difficult to use, and non-intuitive.

When first exploring the available algorithms,dnted to choose algorithms that
would reveal information to aid in the developirfgagredictor. Neural networks and
other functional learning methods can predict nuerggta. However, many functional
data mining methods do not easily illuminate relasi within the data; they work for
producing a result.

As mentioned earlier, it is possible for the pegali to utilize slightly larger
memory blocks for smaller requests. Coupled withlienefits of readability of
classification algorithms compared to clusteringpakthms, most notably decision trees,
it seemed attractive to bundle the size requetisaismaller nominal set of data. To
discretize the sizes, | applied Weka’s supervissdretize method on the sampled data
(using both count_of _next128 as the nominal tydd)is yielded the results in the
following table:

Size Range| Number of Samples
(-inf-26] 655
(26-308] 394
(308-404] 79
(404-1148] | 21
(1148-4088]| 139
(4088-inf) | 32

Although this range is useful, it is not as preaitfor combining memory sizes, as
they do not maximize efficiency as well as sumkaajer powers of 2. With this list in
mind, along with the potential of reasonably ovardimemory blocks and class versus
array data sizes, | constructed the following categ:

(0-24] very-small
(24-64] small
(64-192] medium-small
(192-512] medium-large
(512-1024] | large
(1024-4096]| extra-large
(4096-inf] huge

When | began experimenting with various algorithfrised using the size
discretized and numeric. To a small surprisephtbthat discretized size to predict the
future frequency of the size in allocation requéstsd no significant impact on the results.
Nearly all the algorithms I tried (using parameteasonable for our data set) had
classification accuracy within a couple percentagiats (most were in the neighborhood
of 80-85% accuracy) when comparing discretizedutmeric size values in predicting
count_of _next128. Though this indicates that @szing of sizes may not be useful, it is
required to use most non-function-based classifeedict the size of the next memory
allocation requests.

5.5 Evaluation of Algorithms

To choose which algorithm to base most of thegiews off, | wanted to try a
variety. | compared the following 9 algorithms fmcuracy based on predicting
count_of_next128 (with time_til_next removed frame input) using 10-fold cross-
validation:

Algorithm Evaluated Accuracy | Notable Parameters
Rule Based: JRip 86.2879Use 10 rules

Rule Based: Conjunctive Rule

(single rule learner) 77.1212

0.000001 confidence factor
(high threshold, producing 8

Tree Based: J48 86.51%52mall tree)
Tree Based: Random Forrest 88.3333) trees
Lazy: IB1 85.4545

Lazy: LWL 79.1667

Boosting: AdaBoost w/ J48 tree 87.5758

Network Based: Multilayer
Perceptron 86.0606
Network Based: Bayes Network 83.9394

All of the classification algorithms tested yieldgidhilar results. The network-
based algorithms, especially the multilayer penmcephetwork took the longest to
compute. Because this prediction model must rumlimited computing environment,
so simple-to-compute models are preferable. Hureadability of the results is also
very preferable, because it allows for a straigivbird implementation of the predictor,
as well as observable justifications for the prexdis behavior.

Because the primary goal of this analysis isltoriinate memory allocation
prediction strategies, it is obviously very usetuknow how well the heuristics compare
for initial classification. By using the measurfdrdormation gain, the heuristics are
ranked as follows:

Prediction Target Information Gain | Heuristic

count_of next128, discretized size 0.976 | count-of-last-128
0.976 | count-of-last-32

0.976 | count-of-last-8
0.531 | entropy-of-last-128
0.49 | entropy-of-last-32

0.45 | entropy-of-last-8
0.337 | time-since-eviction

0.276 | size
0.249 | time-last-seen
0.229 | time-since-free
0.217 | previous-size
0.141 | time-since-alloc

count_of_next128, numeric size 0.3418 | count-of-last-128
0.3418 | count-of-last-32
0.3418 | count-of-last-8
0.2529 | entropy-of-last-32
0.2223 | entropy-of-last-8
0.22 | entropy-of-last-128
0.173 | size
0.1419 | time-since-eviction
0.1248 | time-since-free
0.1134 | time-last-seen
0.0897 | time-since-alloc
0.0684 | previous-size

time til next 0.526 | time-since-alloc
- 0.431 | time-last-seen
0.429 | size

0.375 | previous-size
0.222 | time-since-eviction
0.185 | entropy-of-last-128
0.184 | time-since-free
0.18 | count-of-last-32
0.18 | count-of-last-8
0.18 | count-of-last-128
0.165 | entropy-of-last-32
0.134 | entropy-of-last-8

size 1.1674 | previous-size
0.6217 | time-last-seen
0.5634 | time-since-alloc
0.5306 | count-of-last-32
0.5306 | count-of-last-128
0.5306 | count-of-last-8
0.5204 | time-since-eviction
0.2932 | entropy-of-last-128
0.2654 | time-since-free
0.1383 | entropy-of-last-32
0.0992 | entropy-of-last-8

From the initial analysis, it shows that the cowfitlast128 is the best predictor
of the frequency of the current size occurringha hext 128 allocations, as are counts of
the previous 32 and 8. Discretization of size Wy small affects on the ordering. It
was also interesting that the best predictor oétitih_next was time_since_alloc, and
size was previous_size. These results indicatéetisency for memory allocation
patterns to follow the same patterns on the snoalks but provide interesting
information as to what parameters are useful wherpatterns are not as regular.

5.6 Results

When creating models for optimizing program exiytcare must be taken not
to over-fit the profiles. Optimizing for one or dvwparticular programs is usually easy,
but optimizing such that most programs will runtéass much more difficult. Coupling
this with Occam’s razor, | sought the simplest dieci trees that would give me good
results. | chose to use Weka’'s J48 algorithm datisee classifier, which is based off
the C4.5 decision tree algorithm because it is lyidsed and seemed to be very
effective.

By trying different confidence factor thresholdsdecision tree pruning, | found
that decreasing the confidence threshold to .000®@ldecision tree was very small, but
still provided results within a few percentage peiof large confidence thresholds.

For the count_of _next128 prediction using diseestisizes, Weka produced:

Decision Tree count-of-last-128 <= 86

count-of-last-128 <= 35: low (387.0/63.0)
count-of-last-128 > 35

| entropy-of-last-32 <= 0.195909: high (1Z.0)

| entropy-of-last-32 > 0.195909

| | time-since-free <= 240336208: mediu8(@/50.0)
| | time-since-free > 240336208: low (1D.0Y
count-of-last-128 > 86: high (688.0/64.0)

Accuracy Correctly Classified Instances 1115 84.4697 %
Incorrectly Classified Instances 205 15.5303 %
Confusion Matrix | A B C D € Classified as
2 35 0 0 A=none
0 332 32 15 B=low
0 25 147 60 C=medium
1 12 25 634 D=high

This result shows that the best predictor is h@gudently the size has occurred
before, but that if the count is mid-range, thetheipends more on how many different
sizes are being allocated in the last 32 allocation

For the count_of next128 prediction using numsizes, Weka produced the
following decision tree:

Decision Tree count-of-last-32 <= 13
| count-of-last-128 <= 34: low (349.0/45.0)

| count-of-last-128 > 34

| | count-of-last-8 <=5

| | | size <= 36: medium (84.0/30.0)

| | | size>36:low (11.0)

| | count-of-last-8 > 5: high (7.0/2.0)
count-of-last-32 > 13

| count-of-last-128 <= 87

| | count-of-last-32 <= 25: medium (154.0/30.0)
| | count-of-last-32 > 25: high (33.0/11.0)

| count-of-last-128 > 87: high (682.0/73.0)

Accuracy Correctly Classified Instances 1096 83.0303 %
Incorrectly Classified Instances 224 16.9697 %
Confusion Matrix A B C D € Classified as
0 33 0 1 A=none
3 317 37 22 B=low
0 30 157 66 C=medium
0 6 26 622 D=high

These results are interesting in how they diffenfithe results produced with
discretized sizes. This tree uses all the ranfesunts, and uses sizes for some fine
tuning.

For time_til_next prediction using numeric sizegt(bescritizing the data set in
order to classify time_til_next), Weka produced:

Decision Tree

time-since-alloc = (-inf-4622]: (-4598] (527.0/145.0)
time-since-alloc = (4622-27924]. (4598-28286] (21083.0)
time-since-alloc = (27924-123326]
| entropy-of-last-32 = (-inf-0.481238]: (282864¥3.4] (78.0/29.0)
| entropy-of-last-32 = (0.481238-1.221548]: (428286] (9.0/5.0)
| entropy-of-last-32 = (1.221548-1.570624]: (428286] (6.0/3.0)
| entropy-of-last-32 = (1.570624-inf): (4598-282836.0/10.0)
time-since-alloc = (123326-13316372]: (134414-(1#6.0/30.0)
time-since-alloc = (13316372-inf): (28286-134418])(1.0)

Accuracy Correctly Classified Instances 910 68.9394 %
Incorrectly Classified Instances 410 31.0606 %
Confusion Matrix | A B C D € Classified as
382 152 5 1 A= (-inf-4598]
129 358 4 13 B= (4598-28286]
16 39 52 22 C= (28286-134414]
0 10 19 118 D= (134414-inf)

The accuracy is not as high for predicting time n@xt, but predicting the

attribute is not as important as the others. Téwsibn tree shows that programs tend to

allocate memory at fairly constant rates. The @xgeption is if a program is having
mid-range times between allocations, it dependsroarthe number of different sizes
being allocated. This makes intuitive sense it ifteprogram is having some time
between allocations, it may be doing different sasind the variety of those tasks would
predict how long until the next allocation.

For size prediction (using a slightly smaller cdefice factor of .0000001), Weka

produced:

Decision Tree

previous-size <= 304

time-last-seen <= 46648

previous-size <= 24: very-small (523.0/31.0
previous-size > 24

I
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I
Y
I
I
I
I
I
I
I
I
I
I

time-last-seen > 46648: small (281.0/115.0)
revious-size > 304

previous-size <= 448: medium-large (83.0)
previous-size > 448

count-of-last-128 <= 95

count-of-last-128 > 95
| time-since-alloc <= 30204: extra-lafg®/2.0)
| time-since-alloc > 30204: extra-largjg1(.0)

previous-size <= 64

| time-since-free <= 6096

| | count-of-last-8 <= 0: mediumadin(2.0)

| | count-of-last-8 > 0: small (B1.

| time-since-free > 6096

| | count-of-last-128 <= 39

| | | time-since-free <= 65129&80all (59.0/11.0)
| | | time-since-free > 651298&0y-small (4.0)
| | count-of-last-128 > 39: veryadin(62.0/1.0)
previous-size > 64

| time-last-seen <= 7664: medium-5(al.0/1.0)
| time-last-seen > 7664

| | count-of-last-8 <= 7: very-sh{a6.0/8.0)

| | count-of-last-8 > 7: medium-8r¢ikD.0)

previous-size <= 1024

| count-of-last-128 <= 31: large (18.0)
| count-of-last-128 > 31: very-sn{&lD)
previous-size > 1024: huge (36.0/10.0)

Accuracy Correctly Classified Instances 1098 83.1818 %
Incorrectly Classified Instances 222 16.8182 %
Confusion A B C D E F G €Classified as
Matrix 565 75 6 2 1 2 3 A=very small
38 233 0 1 1 1 1 B=small
8 38 52 2 2 0 1 C=medium-small
1 8 0 83 2 0 0 D=medium-large
2 6 0 0 9 2 0 E=large
2 5 1 0 3 131 6 F=extra-large
0 1 0 0 0 1 25 G=huge

Attempting to predict the size is a little moréidult than the other attributes,
and thus produces a bigger decision tree. Themmrhfactor is the previous size, and
then is decided by how many times it the particalae was seen (which would need to

be evaluated for each of the different sizes amdpaved for accuracy). Some of the
lower nodes in the decision tree decide on timing,those seem to be less significant.

5.7 Evaluating the M odel

In order to automate the evaluation of the modalrest all of the sources
independently, | needed to use Weka’s Knowledgekihbarface. This interface allows
the user to develop a pipeline of data processmagn@anipulation. The following figure
shows the model | developed for evaluating the moyuof count_of _next128 with
discretized size:

] [
‘ = IE| o ‘%' =3 ‘%
mallee Remowe Cla== Traintng
B e SetMaket, o oiningSes
Fs
-

Clas=zifiac TextWizmer
FarformanceEvaluator

bset
text

Tes l

44% —“w

malloc Remowve Class TestBet
A=signer Haker TextPicmes

In this figure, the data flows from left-to-righT.he top left ARFF loader loads the file
containing the sampled memory allocations fronohthe programs. The unnecessary
fields are removed, source file and time_til_né&xtnake sure they are not used by the
classifier. The Class Assigner module then picke¢_of next128 as the class
differentiator. The data’s type is converted tattbf a training set by the
TrainingSetMaker, and then sent to the J48 clasdiin module. The bottom left path is
almost identical to the top left path, except @de the full test data for an individual
program, and changes it to a test set. The imrtee@iextViewer coming out of the J48
classifier produces the decision tree. The resiltse classification are sent to the
ClassifierPerformanceEvaluator to determine acguaacl error measures, and the
results sent to a TextViewer. The KnowledgeFlowdeis for evaluating the prediction
of size and count_of_next128 with numeric dataa#meost identical. A testing system
was not built for time_til_next. The main reasoaswhat we deemed it as less important,
since it is not as critical for performance, angritbably would not have been worth the
effort (a meaningful discretization of time_til_riexould have been required to use the
J48 classifier). The results of the measuresmatied following table:

count_of next128 count_of next128

prediction accuracy | sizeprediction | prediction accuracy
Program Name | (discretized size) accuracy (numeric size)
7zip 76.4706 66.5991 76.9439
gawk 81.2883 80.184 80.9202
netpbm 69.7867 90.7673 68.9908
ammp 97.9884 99.9683 98.1943
gcc 88.6121 88.3514 88.8402
perl 89.5768 57.3246 89.4866
bison 86.545¢ 80.4585 85.8227
gzip 85.6368 80.3333 85.7282
splint 87.9127 87.123 87.3335
diffutils 100 100 100
espresso 85.4824 76.1948 84.3102

The count_of next128 evaluations were fairly gaorbss all the measures. The
lowest accuracy was netpbm, which was still at 89.&ize prediction accuracy had
slightly more disparity, the lowest being perl Z#baccuracy. To see if perl is easily
predictable, even though it performs only modeyatell on this model, | tried
classifying it on its own. With the same low cal#hce factor of .0000005, Weka
produced a large decision tree of 333 nodes, veithracy of 87%. | could not decrease
the threshold any lower without Weka failing to guce any decision tree at all. Perl
may be predictable, but it is too complex and tmbi@ (it is only one program) for us to
consider such models.

5.8 Discussion

Before doing this investigation, we had severgddilgeses. We thought that
determining the common frequently allocated sizesld/be a good predictor of future
frequencies. This hypothesis was confirmed, mottbly by the strength of the previous
counts used in deciding the frequency of a padicsilze in the next 128 allocations. We
also thought that by discretizing allocation size,would be able to better our
predicting. In this study, however, | found thaistis only partly true. Discretization of
sizes is required in order to use any easily utdedsble classifier model in order to
predict future sizes, which conforms to our initigpothesis. Comparing discretization
to numeric treatment of sizes for predicting thieife frequency of a given size does not
seem to improve the results. Discretizing the dizes change the structure of the
decision tree and relative importance of differattibutes, which is interesting. With
numeric results, the decision tree took into acttm variety of sizes being allocated
(entropy), whereas the discretized decision trestindealt with past occurrence
frequencies. Perhaps it would be best to comihieéwwo models. This will need to be
studied further.

This study did confirm our belief that memory aldion sizes can be predicted
with some accuracy. The fact that the predictibfuture frequency is more accurate
than the prediction of the next allocation sizef@ices the initial design of having a pool
of pre-allocated sizes waiting to be allocated.

Ultimately, the execution speed will be the fidatermining factor as to the
confidence of these results. Even with our knog#edf importance of attributes in
predicting memory allocation, the system will midlgtly require a good deal of fine
parameter tuning, and evaluation on more diffepeagrams. We also need to watch for
any programs that perform pathologically badly urm& model, but obtaining any
reasonable sample of such a large pool of used ammprograms is virtually
impossible.

These decision trees will be used in creatingibges for our predictor.

6. Conclusion

This study of methods to predict memory allocapatterns had good results. It
showed that memory allocation prediction is worthevand predictable, and also
provided easily to understand heuristics from whahbhase our predictor. The decision
tree classifications worked as well as any othpe tyf predictor behavior. We will
continue this work on memory allocation predictiwith this information, and hopefully
be able to hide the majority of the additional hatg required by our memory allocation
system.

References

[1] Berger, Emery D., Zorn, Benjamin G., McKinldgathryn S. Reconsidering Custom Memory
Allocation. 17" ACM Conference on Object-Oriented Programmingt&ys, Languages, and
Applications (OOPSLA’02), pp 1-12, November 2002.

[2] Seidl, Matthew L., Zorn, Benjamin G. Segreggtiteap Objects by Reference Behavior and Lifetime.
Eight International Conference on Architectural Sonp for Programming Languages and Operation
Systems (ASPLOSVIII), pp 12-23, San Jose, CA, Oatdl998.

[3] Seidl, Matthew L., Zorn, Benjamin G. PredictiRgferences to Dynamically Allocated Objects.
Department of Computer Science, University of Cadtar at Boulder, Technical Report CU-CS-826-97,
January 1997.

[4] Barrett, David A., Zorn, Benjamin G. Using ktfme Predictors to Improve Memory Allocation
Performance. ACM SIGPLAN’'93 Conference on Prograngrianguage Design and Implementation, pp
177-186. Albuquerque, NM. June 1993.

[5] Grunwald, Dirk., Zorn, Benjamin G. CustoMaltdefficient Synthesized Memory Allocators.
Technical Report CU-CS-602-92, Department of Comip8tience, University of Colorado, Boulder,
Boulder, CO, July 1992.

[6] Bonwick, Jeff. The Slab Allocator: An Objecta€hing Kernel Memory Allocator. Proceedings of the
USENIX Summer Technical Conference, pp 87-98, 119%:.

[7] Chang, M., Gehringer, E. F. “A High-Performaridemory Allocator for Object-Oriented Systems,”
IEEE Transactions on Computers. March, 1996. pp-35%.

[8] Daugherty, C. H., Chang, J. M. “Common List Med: A Simple, Efficient Allocator Implementation”,
Proceedings of Sixth Ann. High-Performance CompguSymposium, Boston, Massachusetts, Apr. 5-9,
1998. pp. 180-185.

[9] Wuytack, Sven., da Silva, Julio L. Jr., Catthderancky. de Jong, Gjalt. Ykman-Couvreur, Chantal
Memory Management for Embedded Network ApplicatioRgadings in Hardware/Software Co-design.
Kluwer Academic Publishers. pp. 465-476. 2002.

[10] Cohn D, Singh S. Predicting lifetimes in dyriaally allocated memory. Advances in Neural
Information Processing Systems 9. 1996.

[11] Hilderman, Robert J., Hamilton, Howard,KInowledge Discovery and Interestingness Measures: A
Survey. Technical Report CS 99-04, University ofiRa, Regina, Saskatchewan, Canada, 1999.

[12] Dietterich, Thomas G. An Experimental Comgpan of Three Methods for Constructing Ensembles
of Decision Trees: Bagging, Boosting, and Randotiira Machine Learning vol 40, pp 139-157. 2000.

[13] Fiat, Amos., Pechyony, Dmitry. Decision Trebkre Theoretical Justification for Practical
Algorithms. Proceedings of the L fnternational Conference Algorithmic Learning TheoPp 156-170.
Padova, Italy. October 2004.

