

Predicting Application Memory Allocation Behavior

Project Report
Christopher J. Hazard

North Carolina State University
April 21, 2005

1. Introduction
 Computer architecture has always been rapidly changing. New architectures are
invented, techniques are refined, and new problems need to be addressed. Memory
latency has been one of the biggest hurdles recently in advancing the throughput of
computer processors. Processor architecture technologies continue to advance, but the
amount of CPU cycles wasted waiting on memory has been continuously climbing.
Because of this, SMT (simultaneous multi-threading, also known as Hyper-threading),
and CMP (chip multi-processing) are becoming popular, with both Intel and AMD
recently releasing CMP processors. Both of these solutions add processor throughput,
but all virtual processors share the same cache, increasing the performance degradation of
cache contention. In general, computer architecture is looking in the direction of
increasing multi-tasking for higher throughput.
 Computer security has also been an increasing concern. As our dependency on
computing infrastructure continues to grow, security exploits will have greater cost.
Buffer overflows, one of the more common exploits, occur when erroneous code allows
external data to be written out of its bounds to overwrite, damage, and possibly control
the program. Many attacks against the program heap could be prevented if unused pages
were write-protected.
 The project we are working on addresses aspects in both of these issues. The
primary goal of this project is to provide increased security without negatively impacting
performance. This goal is achieved by creating a memory heap server that executes in
parallel on the processor with kernel memory privileges. By allowing the memory
allocations and frees to occur asynchronously, the processor’s capacity is utilized without
creating much cache contention.
 Because the memory allocation and freeing is asynchronous, a communication
delay is added in the overhead of each memory allocation. By predicting the size and
times of memory block requests, the memory management system can hide the latency of
memory allocation. The more accurately this thread can predict requests, the faster the
program will be executed.
 For this project, I am aiding Mazen Kharbutli, who is working under Professor
Solihin in the ECE department. My role is to determine ways that memory allocation
management actions can be predicted without prior knowledge about the programs and
their execution. The work has not yet been published, so further implementation and
implication details are preferred to not be disseminated. With regard to data mining for
memory allocation prediction, such details are nevertheless irrelevant.

2. Background
 Because of the increased latency for memory allocations, the memory manager
needs to successfully predict memory allocations occurring in the near future. Some
programs have been found to have high sustained memory allocation request rates which
will be difficult for the memory manager to keep up with. Such cases will require the
memory allocation prediction to be accurate in batch allocations to prevent major
slowdown.
 It should also be noted that the application side maintains a pool of 8 to 16 pre-
allocated memory sizes in reserve. The number of pre-allocated chunks may be large;

however two problems arise if the number is too large. The primary problem is that if the
application requests a new memory size that is not in the memory pool, one of the size
pools must be evicted. The overhead of freeing these unused memory blocks consumes
time and communication bandwidth from the memory manager. The second problem is
the extra memory required. It is a waste of system resources for a small program to
allocate significant amounts of memory that it will not use.
 Freed memory blocks may be added back to the pre-allocated pools instead of
being sent back to the memory manager to be asynchronously freed. It is the job of the
predictor to make all of these choices. In this paper, I will report on my findings in using
data mining techniques to find insights that will help us in the construction of this
predictor.

3. Related Work
 Surprisingly little work has been done on predicting memory allocation requests.
Much work has been done in garbage collection, but very little of it is applicable to
standard low-level memory practices. In practice, performance bound programs that
have specific memory allocation patterns have created custom memory allocators.
However, they often do not outperform the standard memory allocation algorithms [1].
 Zorn et. al did large amounts of work investigating using and predicting different
memory allocation usages in terms of the memory block’s lifetime. By using the stack
information as input to an analytic predictor for segregating heap objects by usage
patterns, Seidel and Zorn were able to decrease page faults and slightly improve cache
hits [2,3]. In [4], Barrett and Zorn investigate using the predicting lifespan of an
allocated block to designate the memory allocation technique and location used to
allocate the memory block. Using this technique, they improve memory management
performance by predicting lifespan based on the function call chain. Grunwald’s work
with Zorn [5] used different memory allocation strategies during run-time to optimize
execution speed for a particular application while keeping unused memory low, based off
application profiles.
 Caching initialized objects to reduce initialization overhead during memory
allocations was investigated by Bonwick [6], but does not use any predictive modeling.
Chang, et. al investigated the use of a hardware memory management system using a
bitmapped memory allocator, which requires linear storage overhead for the bitmap with
regard to the size of the memory [7,8]. Wuytack et. al used decision trees to improve the
throughput and behavior of memory management on high-throughput embedded network
devices, however, the decision trees were derived analytically from knowledge about the
specific data structures used [9].

3.1 Selected Paper Review

In their paper entitled, “Predicting lifetimes in dynamically allocated memory”,
Cohn and Singh describe their approach of using decision trees to tune memory
management systems [10]. By better predicting memory block lifetimes, a memory
manager can decrease CPU usage required for memory allocations, decrease memory
fragmentation, and improve program cache locality. Their related work section is a bit
short, but to give the authors some credit, little work was being done on memory

management at the time and this paper was cited and extended in following years in other
important works in memory management.

Following the introduction, the authors describe the features selected for use in
their decision tree. Previous work has investigated using program flow analysis to
predict memory lifetimes, but the authors argue that it is not just the program flow and
functions, but rather the parameters; the same function called with different parameters
may behave differently. To take this into account, their decision tree’s classification is
based on the top 20 machine words in the stack. The authors find that use of the registers
in the decision tree is insignificant.

In distinguishing short-lived memory blocks from long term blocks from
“permanent” blocks (lasting the duration of program execution), the memory manager
can use different strategies optimized for the memory blocks’ lifetime. However, false
positives may be costly, as memory blocks allocated with a mispredicted lifetime may
adversely affect many other allocations. The authors assumed false positives and false
negatives to have the same weight for ease of evaluation.

The authors used the OC1 decision tree software. The tree evaluation was based
on a cost complexity heuristic, using 90% of the samples to build the tree and 10% to
prune it. Because the software did not provide the capability of using a custom heuristic,
the authors used a boosting technique to include equal numbers of positive and negative
examples by duplicating training examples. They did not use the word boosting, perhaps
because the term was not widely used at that point.

The authors profiled a common set of benchmarks: Ghostscript, Espresso, Cfrac,
Gawk, Perl, and GCC. These programs were recompiled and linked against a slightly
modified version of the standard C library that recorded when specific segments of
memory were allocated and freed, along with the 20 words of stack trace.
 The authors then compare the results of OC1 false positive and false negative
rates to that of the only other work done prior to their paper (by Barrett and Zorn). Cohn
and Singh’s worst results are comparable, but the best results are far better predictors
(e.g. 25.2% false negatives compared with 1.7% false negatives). For predicting
permanent memory allocations, their system had very good performance for 3 of the 4
metrics.
 To test the actual performance gained by using the decision tree, the authors
implemented a slightly modified version. If a specific memory allocation site only
reserved memory for one type of use (short-term, long-term, permanent), the authors used
the specific memory allocation algorithm. If the memory allocation site’s uses were
mixed, the authors used the decision tree to dynamically choose which algorithm it would
use. For most of the results, efficiency was increased by a small amount. The Cfrac
program, however, performed very poorly during long runs due to mispredictions.

In this paper, the authors were the first to apply machine learning or data mining
to memory management. In the past 9 years, virtually no other groups have applied such
methods to lower level memory management (several have extended the methods, but I
have been unable to find any work on this problem outside of higher level garbage
collection techniques). I speculate that it may be due to the fact that most programs
spend only a small fraction of their execution time performing memory management.
Though exceptions do exist, it makes a tough case to sell when many programs would

receive only a small percentage increase in execution speed from the added complexity of
a decision tree-based memory manager.

On the other hand, this work does seem somewhat incomplete. The authors used
only 6 programs for the initial benchmarking, and only used 3 of them for the
performance analysis. It would have also been interesting to isolate the time spent in the
malloc and free functions before and after using the decision tree, as that would be a good
indicator as to how their method would work for programs that perform large amounts of
memory allocation.

The authors were also severely limited by the available data mining algorithms
and software. They mentioned that they were unable to use their own evaluation
mechanisms in the creation of the decision tree that would take into account the weights
of false positives and false negatives. Given the way many new programming languages
and methods instantiate many objects and destroy them frequently, I think that such a
memory allocation predictor may have greater impact. I would be interested in seeing
this work being redone with today’s data mining techniques in today’s environments, to
see if it would yield better results.

3.2 Data Mining Algorithms
 The primary data mining algorithm used in this work is J48, a C4.5 algorithm
based decision tree classifier implemented in Weka. The algorithm attempts to maximize
entropy gain when making each split in the decision tree. C4.5 has been widely used, and
due to its maturity, searching for papers on C4.5 reveals that most of the studies
involving it are applying it to other domains. Though entropy is used in the C4.5
algorithm, there are a wide variety of successfully used interestingness measures to
choose from [11]. Bagging, boosting, and randomization has been studied with C4.5,
showing that boosting gives the best results, with randomization and bagging giving
similar quality decision trees [12], but bagging is the best method for practical use due to
boosting’s sensitivity to noise. Though I had a large volume of data in this project, I used
bagging by sampling the large data set with replacement. In terms of decision tree
theory, Fiat and Pechyony have recently explored some theoretical underpinnings for
optimality [13].

4. Obtaining the Data

4.1 Program Selection
 To obtain useful memory allocation patterns, careful consideration went into
deciding which programs to profile. The programs must be diverse, because profiling ten
programs that fulfill the same role would likely only show us a small subset of allocation
patterns. However, the scope of available programs is greatly limited by the processor
simulator on which they will be required to run for certain performance evaluations. The
simulator has a very limited implementation of POSIX, without support for networking,
multithreading, or X-Windows. To be useful, programs must also have non-trivial
memory allocation patterns. For example, a program which allocates a small number of
blocks upon initialization with no further memory allocation would not be affected by
memory allocation latency. The programs need to be open source as well, so that they
can be later recompiled to run on the processor simulator.

 The SPEC CPU 2000 benchmarks are a common standard for processor profiling.
Despite the commonality, we only chose a couple of those measures, since many of them
do not exhibit the aforementioned characteristics. The final list of programs chosen is as
follows:

Name Description
7zip data compression utility that uses a variety of compression

algorithms
ammp SPEC CPU 2000 benchmark
bison CFG parser generator, run with the specifications of a Java language

CFG parser source
diffutils finds differences between text files
espresso logic minimization solver
gawk GNU Awk interpreter
gcc optimizing C/C++ compiler (SPEC CPU 2000 benchmark)
gzip data compression utility (SPEC CPU 2000 benchmark)
netpbm image format translation library, run to convert still images to a

compressed movie file
perl interpreter for the Perl programming language, run with a script to

do various text parsing
splint C/C++ static security source analysis tool

4.2 Data Collection
 The data were collected by augmenting the standard C library malloc functions to
log every call. The obvious data to log is whether the memory is being allocated or freed,
as well as the size requested for an allocation. In addition, we logged the current time as
measured in CPU clock ticks (zero representing the first memory allocation), allowing us
to see memory allocation timing patterns. We recorded the amount of time taken to
perform the memory management task for future performance comparisons. The address
of each memory allocated or freed was logged as well. This allows us to find when a
specific block of memory was both allocated and freed, which would be required for
memory lifetime analysis.

We also recorded the calling address of each malloc and free, hoping to be able to
associate particular allocation sizes with certain parts of the code. After inspecting the
data for many of the programs, I found the calling address attribute to be an unreliable
indicator, which became more obvious after looking through the high level source code.
Many programs use their own small allocation functions that call malloc and perform
safety checks, but many also do not. As common programming standards and languages
continuously change and call stack analysis can become quite complex for our
application, we decided that utilizing this measure would not be in our best interests for
universal prediction.
 Initially, we intended to use the simulator to gather cache activity to find access
patterns. Our hope was that the allocator could use cache access patterns to predict future
access patterns and allocate memory to increase cache hits. Other commitments on the
part of the project leader forced this data collection out of the schedule (they also delayed

my data from being collected for several weeks). In hindsight, the cache access patterns
would have added a great deal of complexity to the system and the analysis, and seems
best suited for future work after a functional system is in order.

5. Analysis
5.1 Constraints on Memory Predictor
 The memory system imposes several constraints that each affects prediction in a
different manner. One constraint is that all memory requests less than 16 bytes will be
rounded up to 16 bytes, and all larger requests are rounded up to the next multiple of 8
bytes. This limitation is required for memory allocation efficiency, but also aids data
mining slightly by somewhat discretizing the allowed sizes. The system easily allows for
the possibility of using larger memory blocks for smaller requests, so if the system
predicts a larger size, they can be used even if wrong. The predictor must be careful not
to do this too often, or with sizes too large, otherwise the program will consume more
memory than is required, suffer more page misses, and potentially suffer more cache
misses.
 A second constraint is that the memory predictor must be careful to not converge;
it must be ergodic. If the memory predictor applies any real-time machine learning
techniques, it must be designed to disregard or unlearn old memory allocation patterns.
Programs often have distinct phases. If the memory allocation predictor’s training kept
all of the results since the beginning of the program, it may continue to use patterns from
the earlier phase in the later phases. Occasionally this may be beneficial, but other times
it may cause unreasonable predictions, severely hindering the performance of the
memory manager.
 The last major constraint is timing. To be effective, the memory manager must
not use large amounts of processing power and memory. Any prediction algorithms must
be relatively simple. The memory manager can afford more complex calculations if it
predicts with reasonable accuracy that it will not be receiving memory allocation requests
for a longer duration.

5.2 Sequential Analysis Attempt
 Initially, I sought to break the stream of memory operations into phases, cluster
the phases, and then find patterns that would be best predictors for each given phase type.
To do this, I wrote a Perl script to combine the malloc’s and free’s that operated on the
same address into the same memory allocation event. Instead of having a separate malloc
and free line, the allocation lines had the memory blocks’ lifetimes. This was particularly
helpful because the malloc and free contained very different information, and the free
events did not contain the blocks’ sizes.
 I investigated phase analysis as applied to intrusion detection systems, child
growth, and low level instruction phases for processors. Unfortunately, all of the phase
recognition systems I investigated were very large and complex. The complexity worried
me on two fronts: the amount of effort it would take to implement the algorithms and also
the amount of processing the memory manager can reasonably in predicting memory
allocations. Additionally, all the phase recognizers I encountered were able to utilize
higher dimensional data than I had, so I wondered about the capability to recognize
phases based only on memory allocation times and sizes. I spent a bit of time

qualitatively analyzing the data (staring at every graph I could come up with), and
eventually decided that I should try another more promising approach.

5.3 Collapsing Sequential Data
 Given that the memory management predictor must make decisions based on the
current situation, I decided to investigate collapsing each of the points in the time series
into an element that represents everything that the predictor is likely to know about its
situation. By evaluating heuristics from the perspective of every point in the data,
sequential dependencies can be removed, and each data point can be analyzed
independent of the others.
 The evaluation heuristics are best guesses at what types of aggregated measures
that could be useful. All of the aggregated measures were applied to the memory sizes
after rounding according to the rounding requirements specified in section 5.1. The
complete list of metrics I created and evaluated is as follows:

Name Description (all times are in processor cycles)
size Size of the current memory allocation request
previous_size Size of the previous memory allocation request
time_since_last_alloc Time since last allocation of any size
time_since_last_eviction In maintaining a least-recently-used eviction policy in a

cache of the most recently used 8 sizes, this is the time since
the last eviction was required.

time_size_last_seen Time since a memory allocation request of this size was
received

last_free_this_size Time since a memory block of the given size was last freed
(0 if has never been freed)

entropy_of_last128 The entropy of last 128 memory allocation requests,
computed with respect to allocation size probabilities.
H(X) = -∑ p(x) log2 p(x),
where p(x) is the probability of the given size out of the last
128 sizes.

entropy_of_last32 Same as entropy_of_last128, but with the previous 32
memory allocation requests

entropy_of_last8 Same as entropy_of_last128, but with the previous 8
memory allocation requests

count_of_last128 Number of memory allocation requests of the current size
out of the last 128 requests

count_of_last32 Same as count_of_last128, but with the previous 32 memory
allocation requests

count_of_last8 Same as count_of_last128, but with the previous 8 memory
allocation requests

time_til_next Time until the next memory allocation request will occur -
Used for training and evaluating.

count_of_next128 If the frequency of the current size is 0 for the next 128
memory allocation requests, then ‘none’.
If the frequency is <= 1/3 of the 128, then ‘low’.

If the frequency is <= 2/3 of the 128, then ‘medium’.
If the frequency is > 2/3 of the 128, then ‘high’.
Used for training and evaluating.

These metrics were coded as part of a batch preprocessor that translated the raw

data into both ARFF and CSV files for use in Weka and Excel. The batch processor
processed each of the data sets in its entirety (one per profiled application), and wrote out
files with data elements that were sequentially independent, containing the metrics
mentioned above. Because the count_of_next128 and count_of_last128 metrics needed a
span of 256 entries, several data sets were thrown out at this point because they contained
too few elements (the data sets thrown out are not listed in section 4.1). Ignoring this
data is not problematic for a universal predictor because applications with few memory
allocation requests will not be noticeably impacted by the increased overhead.

The batch preprocessor also sampled the applications by randomly choosing 120
of the data points from each of them, totaling 1320 data points from the 11 profiled
applications in a single file for experimentation. I wrote the batch processor in Perl for
several reasons: Perl is excellent at text processing; Perl is good for rapid prototyping;
and I am very experienced with the Perl language.

5.4 Initial Analysis Using Weka
 Earlier in the semester, before I had obtained my data, I experimented with both
SAS and Weka. I chose to use Weka for two primary reasons. First, SAS does not have
recent versions of its software available for Apple’s OS X. And second, Weka was very
easy to learn and very intuitive. The only portion I for which I needed to read training
materials was the KnowledgeFlow package. I worked through several training tutorials
with SAS. Though SAS had more features than Weka, I found it comparatively clunky,
difficult to use, and non-intuitive.
 When first exploring the available algorithms, I wanted to choose algorithms that
would reveal information to aid in the developing of a predictor. Neural networks and
other functional learning methods can predict numeric data. However, many functional
data mining methods do not easily illuminate relations within the data; they work for
producing a result.
 As mentioned earlier, it is possible for the predictor to utilize slightly larger
memory blocks for smaller requests. Coupled with the benefits of readability of
classification algorithms compared to clustering algorithms, most notably decision trees,
it seemed attractive to bundle the size requests into a smaller nominal set of data. To
discretize the sizes, I applied Weka’s supervised discretize method on the sampled data
(using both count_of_next128 as the nominal type). This yielded the results in the
following table:

Size Range Number of Samples
(-inf-26] 655
(26-308] 394
(308-404] 79
(404-1148] 21
(1148-4088] 139
(4088-inf) 32

 Although this range is useful, it is not as practical for combining memory sizes, as
they do not maximize efficiency as well as sums of larger powers of 2. With this list in
mind, along with the potential of reasonably oversized memory blocks and class versus
array data sizes, I constructed the following categories:

(0-24] very-small
(24-64] small
(64-192] medium-small
(192-512] medium-large
(512-1024] large
(1024-4096] extra-large
(4096-inf] huge

 When I began experimenting with various algorithms, I tried using the size
discretized and numeric. To a small surprise, I found that discretized size to predict the
future frequency of the size in allocation requests had no significant impact on the results.
Nearly all the algorithms I tried (using parameters reasonable for our data set) had
classification accuracy within a couple percentage points (most were in the neighborhood
of 80-85% accuracy) when comparing discretized to numeric size values in predicting
count_of_next128. Though this indicates that discretizing of sizes may not be useful, it is
required to use most non-function-based classifiers to predict the size of the next memory
allocation requests.

5.5 Evaluation of Algorithms
 To choose which algorithm to base most of the decisions off, I wanted to try a
variety. I compared the following 9 algorithms for accuracy based on predicting
count_of_next128 (with time_til_next removed from the input) using 10-fold cross-
validation:

Algorithm Evaluated Accuracy Notable Parameters
Rule Based: JRip 86.2879 Use 10 rules
Rule Based: Conjunctive Rule
(single rule learner) 77.1212

Tree Based: J48 86.5152

0.000001 confidence factor
(high threshold, producing a
small tree)

Tree Based: Random Forrest 88.3333 10 trees

Lazy: IB1 85.4545
Lazy: LWL 79.1667
Boosting: AdaBoost w/ J48 tree 87.5758

Network Based: Multilayer
Perceptron 86.0606
Network Based: Bayes Network 83.9394

All of the classification algorithms tested yielded similar results. The network-

based algorithms, especially the multilayer perceptron network took the longest to
compute. Because this prediction model must run in a limited computing environment,
so simple-to-compute models are preferable. Human readability of the results is also
very preferable, because it allows for a straight-forward implementation of the predictor,
as well as observable justifications for the predictor’s behavior.
 Because the primary goal of this analysis is to illuminate memory allocation
prediction strategies, it is obviously very useful to know how well the heuristics compare
for initial classification. By using the measure of information gain, the heuristics are
ranked as follows:

Prediction Target Information Gain Heuristic

0.976 count-of-last-128
0.976 count-of-last-32
0.976 count-of-last-8
0.531 entropy-of-last-128

0.49 entropy-of-last-32
0.45 entropy-of-last-8

0.337 time-since-eviction
0.276 size
0.249 time-last-seen
0.229 time-since-free
0.217 previous-size
0.141 time-since-alloc

count_of_next128, discretized size

0.3418 count-of-last-128
0.3418 count-of-last-32
0.3418 count-of-last-8
0.2529 entropy-of-last-32
0.2223 entropy-of-last-8

0.22 entropy-of-last-128
0.173 size

0.1419 time-since-eviction
0.1248 time-since-free
0.1134 time-last-seen
0.0897 time-since-alloc
0.0684 previous-size

count_of_next128, numeric size

0.526 time-since-alloc
0.431 time-last-seen
0.429 size
0.375 previous-size
0.222 time-since-eviction
0.185 entropy-of-last-128
0.184 time-since-free

0.18 count-of-last-32
0.18 count-of-last-8
0.18 count-of-last-128

0.165 entropy-of-last-32

time_til_next

0.134 entropy-of-last-8

1.1674 previous-size
0.6217 time-last-seen
0.5634 time-since-alloc
0.5306 count-of-last-32
0.5306 count-of-last-128
0.5306 count-of-last-8
0.5204 time-since-eviction
0.2932 entropy-of-last-128
0.2654 time-since-free
0.1383 entropy-of-last-32
0.0992 entropy-of-last-8

size

 From the initial analysis, it shows that the count_of_last128 is the best predictor
of the frequency of the current size occurring in the next 128 allocations, as are counts of
the previous 32 and 8. Discretization of size had very small affects on the ordering. It
was also interesting that the best predictor of time_til_next was time_since_alloc, and
size was previous_size. These results indicate the tendency for memory allocation
patterns to follow the same patterns on the small scale, but provide interesting
information as to what parameters are useful when the patterns are not as regular.

5.6 Results
 When creating models for optimizing program execution, care must be taken not
to over-fit the profiles. Optimizing for one or two particular programs is usually easy,
but optimizing such that most programs will run faster is much more difficult. Coupling
this with Occam’s razor, I sought the simplest decision trees that would give me good
results. I chose to use Weka’s J48 algorithm decision tree classifier, which is based off
the C4.5 decision tree algorithm because it is widely used and seemed to be very
effective.
 By trying different confidence factor thresholds in decision tree pruning, I found
that decreasing the confidence threshold to .000001, the decision tree was very small, but
still provided results within a few percentage points of large confidence thresholds.
 For the count_of_next128 prediction using discretized sizes, Weka produced:

Decision Tree count-of-last-128 <= 86

| count-of-last-128 <= 35: low (387.0/63.0)
| count-of-last-128 > 35
| | entropy-of-last-32 <= 0.195909: high (17.0/1.0)
| | entropy-of-last-32 > 0.195909
| | | time-since-free <= 240336208: medium (218.0/50.0)
| | | time-since-free > 240336208: low (10.0/1.0)
count-of-last-128 > 86: high (688.0/64.0)

Accuracy Correctly Classified Instances 1115 84.4697 %
Incorrectly Classified Instances 205 15.5303 %
A B C D � Classified as
2 35 0 0 A=none
0 332 32 15 B=low
0 25 147 60 C=medium

Confusion Matrix

1 12 25 634 D=high

This result shows that the best predictor is how frequently the size has occurred
before, but that if the count is mid-range, then it depends more on how many different
sizes are being allocated in the last 32 allocations.
 For the count_of_next128 prediction using numeric sizes, Weka produced the
following decision tree:

Decision Tree count-of-last-32 <= 13

| count-of-last-128 <= 34: low (349.0/45.0)
| count-of-last-128 > 34
| | count-of-last-8 <= 5
| | | size <= 36: medium (84.0/30.0)
| | | size > 36: low (11.0)
| | count-of-last-8 > 5: high (7.0/2.0)
count-of-last-32 > 13
| count-of-last-128 <= 87
| | count-of-last-32 <= 25: medium (154.0/30.0)
| | count-of-last-32 > 25: high (33.0/11.0)
| count-of-last-128 > 87: high (682.0/73.0)

Accuracy Correctly Classified Instances 1096 83.0303 %
Incorrectly Classified Instances 224 16.9697 %
A B C D � Classified as
0 33 0 1 A=none
3 317 37 22 B=low
0 30 157 66 C=medium

Confusion Matrix

0 6 26 622 D=high

These results are interesting in how they differ from the results produced with
discretized sizes. This tree uses all the ranges of counts, and uses sizes for some fine
tuning.

For time_til_next prediction using numeric sizes (but descritizing the data set in
order to classify time_til_next), Weka produced:

Decision Tree time-since-alloc = (-inf-4622]: (-inf-4598] (527.0/145.0)
time-since-alloc = (4622-27924]: (4598-28286] (510.0/183.0)
time-since-alloc = (27924-123326]
| entropy-of-last-32 = (-inf-0.481238]: (28286-134414] (78.0/29.0)
| entropy-of-last-32 = (0.481238-1.221548]: (4598-28286] (9.0/5.0)
| entropy-of-last-32 = (1.221548-1.570624]: (4598-28286] (6.0/3.0)
| entropy-of-last-32 = (1.570624-inf): (4598-28286] (36.0/10.0)
time-since-alloc = (123326-13316372]: (134414-inf) (146.0/30.0)
time-since-alloc = (13316372-inf): (28286-134414] (8.0/1.0)

Accuracy Correctly Classified Instances 910 68.9394 %
Incorrectly Classified Instances 410 31.0606 %
A B C D � Classified as
382 152 5 1 A= (-inf-4598]
129 358 4 13 B= (4598-28286]
16 39 52 22 C= (28286-134414]

Confusion Matrix

0 10 19 118 D= (134414-inf)

The accuracy is not as high for predicting time_til_next, but predicting the
attribute is not as important as the others. The decision tree shows that programs tend to
allocate memory at fairly constant rates. The only exception is if a program is having
mid-range times between allocations, it depends more on the number of different sizes
being allocated. This makes intuitive sense in that if a program is having some time
between allocations, it may be doing different tasks, and the variety of those tasks would
predict how long until the next allocation.

For size prediction (using a slightly smaller confidence factor of .0000001), Weka
produced:

Decision Tree previous-size <= 304

| time-last-seen <= 46648
| | previous-size <= 24: very-small (523.0/31.0)
| | previous-size > 24
| | | previous-size <= 64
| | | | time-since-free <= 6096
| | | | | count-of-last-8 <= 0: medium-small (2.0)
| | | | | count-of-last-8 > 0: small (31.0)
| | | | time-since-free > 6096
| | | | | count-of-last-128 <= 39
| | | | | | time-since-free <= 65129880: small (59.0/11.0)
| | | | | | time-since-free > 65129880: very-small (4.0)
| | | | | count-of-last-128 > 39: very-small (52.0/1.0)
| | | previous-size > 64
| | | | time-last-seen <= 7664: medium-small (42.0/1.0)
| | | | time-last-seen > 7664
| | | | | count-of-last-8 <= 7: very-small (36.0/8.0)
| | | | | count-of-last-8 > 7: medium-small (10.0)
| time-last-seen > 46648: small (281.0/115.0)
previous-size > 304
| previous-size <= 448: medium-large (83.0)
| previous-size > 448
| | count-of-last-128 <= 95
| | | previous-size <= 1024
| | | | count-of-last-128 <= 31: large (19.0/8.0)
| | | | count-of-last-128 > 31: very-small (6.0)
| | | previous-size > 1024: huge (36.0/10.0)
| | count-of-last-128 > 95
| | | time-since-alloc <= 30204: extra-large (5.0/2.0)
| | | time-since-alloc > 30204: extra-large (131.0)

Accuracy Correctly Classified Instances 1098 83.1818 %
Incorrectly Classified Instances 222 16.8182 %
A B C D E F G �Classified as
565 75 6 2 1 2 3 A=very small
38 233 0 1 1 1 1 B=small
8 38 52 2 2 0 1 C=medium-small
1 8 0 83 2 0 0 D=medium-large
2 6 0 0 9 2 0 E=large
2 5 1 0 3 131 6 F=extra-large

Confusion
Matrix

0 1 0 0 0 1 25 G=huge

 Attempting to predict the size is a little more difficult than the other attributes,
and thus produces a bigger decision tree. The dominant factor is the previous size, and
then is decided by how many times it the particular size was seen (which would need to

be evaluated for each of the different sizes and compared for accuracy). Some of the
lower nodes in the decision tree decide on timing, but those seem to be less significant.

5.7 Evaluating the Model
 In order to automate the evaluation of the model against all of the sources
independently, I needed to use Weka’s KnowledgeFlow interface. This interface allows
the user to develop a pipeline of data processing and manipulation. The following figure
shows the model I developed for evaluating the accuracy of count_of_next128 with
discretized size:

In this figure, the data flows from left-to-right. The top left ARFF loader loads the file
containing the sampled memory allocations from all of the programs. The unnecessary
fields are removed, source file and time_til_next, to make sure they are not used by the
classifier. The Class Assigner module then picks count_of_next128 as the class
differentiator. The data’s type is converted to that of a training set by the
TrainingSetMaker, and then sent to the J48 classification module. The bottom left path is
almost identical to the top left path, except it loads the full test data for an individual
program, and changes it to a test set. The immediate TextViewer coming out of the J48
classifier produces the decision tree. The results of the classification are sent to the
ClassifierPerformanceEvaluator to determine accuracy and error measures, and the
results sent to a TextViewer. The KnowledgeFlow models for evaluating the prediction
of size and count_of_next128 with numeric data are almost identical. A testing system
was not built for time_til_next. The main reason was that we deemed it as less important,
since it is not as critical for performance, and it probably would not have been worth the
effort (a meaningful discretization of time_til_next would have been required to use the
J48 classifier). The results of the measures are in the following table:

Program Name

count_of_next128
prediction accuracy
(discretized size)

size prediction
accuracy

count_of_next128
prediction accuracy
(numeric size)

7zip 76.4706 66.5991 76.9439
gawk 81.2883 80.184 80.9202
netpbm 69.7867 90.7673 68.9908
ammp 97.9884 99.9683 98.1943
gcc 88.6121 88.3514 88.8402
perl 89.5768 57.3246 89.4866
bison 86.5459 80.4585 85.8227
gzip 85.6368 80.3333 85.7282
splint 87.9127 87.123 87.3335
diffutils 100 100 100
espresso 85.4824 76.1948 84.3102

 The count_of_next128 evaluations were fairly good across all the measures. The
lowest accuracy was netpbm, which was still at 69.8%. Size prediction accuracy had
slightly more disparity, the lowest being perl at 57% accuracy. To see if perl is easily
predictable, even though it performs only moderately well on this model, I tried
classifying it on its own. With the same low confidence factor of .0000005, Weka
produced a large decision tree of 333 nodes, with accuracy of 87%. I could not decrease
the threshold any lower without Weka failing to produce any decision tree at all. Perl
may be predictable, but it is too complex and too niche (it is only one program) for us to
consider such models.

5.8 Discussion
 Before doing this investigation, we had several hypotheses. We thought that
determining the common frequently allocated sizes would be a good predictor of future
frequencies. This hypothesis was confirmed, most notably by the strength of the previous
counts used in deciding the frequency of a particular size in the next 128 allocations. We
also thought that by discretizing allocation size, we would be able to better our
predicting. In this study, however, I found that this is only partly true. Discretization of
sizes is required in order to use any easily understandable classifier model in order to
predict future sizes, which conforms to our initial hypothesis. Comparing discretization
to numeric treatment of sizes for predicting the future frequency of a given size does not
seem to improve the results. Discretizing the size does change the structure of the
decision tree and relative importance of different attributes, which is interesting. With
numeric results, the decision tree took into account the variety of sizes being allocated
(entropy), whereas the discretized decision tree mostly dealt with past occurrence
frequencies. Perhaps it would be best to combine the two models. This will need to be
studied further.
 This study did confirm our belief that memory allocation sizes can be predicted
with some accuracy. The fact that the prediction of future frequency is more accurate
than the prediction of the next allocation size reinforces the initial design of having a pool
of pre-allocated sizes waiting to be allocated.

 Ultimately, the execution speed will be the final determining factor as to the
confidence of these results. Even with our knowledge of importance of attributes in
predicting memory allocation, the system will most likely require a good deal of fine
parameter tuning, and evaluation on more different programs. We also need to watch for
any programs that perform pathologically badly under our model, but obtaining any
reasonable sample of such a large pool of used computer programs is virtually
impossible.
 These decision trees will be used in creating heuristics for our predictor.

6. Conclusion
 This study of methods to predict memory allocation patterns had good results. It
showed that memory allocation prediction is worthwhile and predictable, and also
provided easily to understand heuristics from which to base our predictor. The decision
tree classifications worked as well as any other type of predictor behavior. We will
continue this work on memory allocation prediction with this information, and hopefully
be able to hide the majority of the additional latency required by our memory allocation
system.

References

[1] Berger, Emery D., Zorn, Benjamin G., McKinley, Kathryn S. Reconsidering Custom Memory
Allocation. 17th ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’02), pp 1-12, November 2002.

[2] Seidl, Matthew L., Zorn, Benjamin G. Segregating Heap Objects by Reference Behavior and Lifetime.
Eight International Conference on Architectural Support for Programming Languages and Operation
Systems (ASPLOSVIII), pp 12-23, San Jose, CA, October 1998.

[3] Seidl, Matthew L., Zorn, Benjamin G. Predicting References to Dynamically Allocated Objects.
Department of Computer Science, University of Colorado at Boulder, Technical Report CU-CS-826-97,
January 1997.

[4] Barrett, David A., Zorn, Benjamin G. Using Lifetime Predictors to Improve Memory Allocation
Performance. ACM SIGPLAN’93 Conference on Programming Language Design and Implementation, pp
177-186. Albuquerque, NM. June 1993.

[5] Grunwald, Dirk., Zorn, Benjamin G. CustoMalloc: Efficient Synthesized Memory Allocators.
Technical Report CU-CS-602-92, Department of Computer Science, University of Colorado, Boulder,
Boulder, CO, July 1992.

[6] Bonwick, Jeff. The Slab Allocator: An Object-Caching Kernel Memory Allocator. Proceedings of the
USENIX Summer Technical Conference, pp 87-98, June 1994.

[7] Chang, M., Gehringer, E. F. “A High-Performance Memory Allocator for Object-Oriented Systems,”
IEEE Transactions on Computers. March, 1996. pp. 357-366.

[8] Daugherty, C. H., Chang, J. M. “Common List Method: A Simple, Efficient Allocator Implementation”,
Proceedings of Sixth Ann. High-Performance Computing Symposium, Boston, Massachusetts, Apr. 5-9,
1998. pp. 180-185.

[9] Wuytack, Sven., da Silva, Julio L. Jr., Catthoor, Francky. de Jong, Gjalt. Ykman-Couvreur, Chantal.
Memory Management for Embedded Network Applications. Readings in Hardware/Software Co-design.
Kluwer Academic Publishers. pp. 465-476. 2002.

[10] Cohn D, Singh S. Predicting lifetimes in dynamically allocated memory. Advances in Neural
Information Processing Systems 9. 1996.

[11] Hilderman, Robert J., Hamilton, Howard, J. Knowledge Discovery and Interestingness Measures: A
Survey. Technical Report CS 99-04, University of Regina, Regina, Saskatchewan, Canada, 1999.

[12] Dietterich, Thomas G. An Experimental Comparison of Three Methods for Constructing Ensembles
of Decision Trees: Bagging, Boosting, and Randomization. Machine Learning vol 40, pp 139-157. 2000.

[13] Fiat, Amos., Pechyony, Dmitry. Decision Trees: More Theoretical Justification for Practical
Algorithms. Proceedings of the 15th International Conference Algorithmic Learning Theory. Pp 156-170.
Padova, Italy. October 2004.

