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1. Introduction 
 Computer architecture has always been rapidly changing.  New architectures are 
invented, techniques are refined, and new problems need to be addressed.  Memory 
latency has been one of the biggest hurdles recently in advancing the throughput of 
computer processors.  Processor architecture technologies continue to advance, but the 
amount of CPU cycles wasted waiting on memory has been continuously climbing.  
Because of this, SMT (simultaneous multi-threading, also known as Hyper-threading), 
and CMP (chip multi-processing) are becoming popular, with both Intel and AMD 
recently releasing CMP processors.  Both of these solutions add processor throughput, 
but all virtual processors share the same cache, increasing the performance degradation of 
cache contention.  In general, computer architecture is looking in the direction of 
increasing multi-tasking for higher throughput. 
 Computer security has also been an increasing concern.  As our dependency on 
computing infrastructure continues to grow, security exploits will have greater cost.  
Buffer overflows, one of the more common exploits, occur when erroneous code allows 
external data to be written out of its bounds to overwrite, damage, and possibly control 
the program.  Many attacks against the program heap could be prevented if unused pages 
were write-protected. 
 The project we are working on addresses aspects in both of these issues.  The 
primary goal of this project is to provide increased security without negatively impacting 
performance.  This goal is achieved by creating a memory heap server that executes in 
parallel on the processor with kernel memory privileges.  By allowing the memory 
allocations and frees to occur asynchronously, the processor’s capacity is utilized without 
creating much cache contention. 
 Because the memory allocation and freeing is asynchronous, a communication 
delay is added in the overhead of each memory allocation.  By predicting the size and 
times of memory block requests, the memory management system can hide the latency of 
memory allocation.  The more accurately this thread can predict requests, the faster the 
program will be executed. 
 For this project, I am aiding Mazen Kharbutli, who is working under Professor 
Solihin in the ECE department.  My role is to determine ways that memory allocation 
management actions can be predicted without prior knowledge about the programs and 
their execution.   The work has not yet been published, so further implementation and 
implication details are preferred to not be disseminated.  With regard to data mining for 
memory allocation prediction, such details are nevertheless irrelevant. 
  
2. Background 
 Because of the increased latency for memory allocations, the memory manager 
needs to successfully predict memory allocations occurring in the near future.  Some 
programs have been found to have high sustained memory allocation request rates which 
will be difficult for the memory manager to keep up with.  Such cases will require the 
memory allocation prediction to be accurate in batch allocations to prevent major 
slowdown. 
 It should also be noted that the application side maintains a pool of 8 to 16 pre-
allocated memory sizes in reserve.  The number of pre-allocated chunks may be large; 



however two problems arise if the number is too large.  The primary problem is that if the 
application requests a new memory size that is not in the memory pool, one of the size 
pools must be evicted.  The overhead of freeing these unused memory blocks consumes 
time and communication bandwidth from the memory manager.  The second problem is 
the extra memory required.  It is a waste of system resources for a small program to 
allocate significant amounts of memory that it will not use. 
 Freed memory blocks may be added back to the pre-allocated pools instead of 
being sent back to the memory manager to be asynchronously freed.  It is the job of the 
predictor to make all of these choices.  In this paper, I will report on my findings in using 
data mining techniques to find insights that will help us in the construction of this 
predictor. 
 
3. Related Work 
 Surprisingly little work has been done on predicting memory allocation requests.  
Much work has been done in garbage collection, but very little of it is applicable to 
standard low-level memory practices.  In practice, performance bound programs that 
have specific memory allocation patterns have created custom memory allocators.  
However, they often do not outperform the standard memory allocation algorithms [1]. 
 Zorn et. al did large amounts of work investigating using and predicting different 
memory allocation usages in terms of the memory block’s lifetime.  By using the stack 
information as input to an analytic predictor for segregating heap objects by usage 
patterns, Seidel and Zorn were able to decrease page faults and slightly improve cache 
hits [2,3].  In [4], Barrett and Zorn investigate using the predicting lifespan of an 
allocated block to designate the memory allocation technique and location used to 
allocate the memory block.  Using this technique, they improve memory management 
performance by predicting lifespan based on the function call chain.  Grunwald’s work 
with Zorn [5] used different memory allocation strategies during run-time to optimize 
execution speed for a particular application while keeping unused memory low, based off 
application profiles. 
 Caching initialized objects to reduce initialization overhead during memory 
allocations was investigated by Bonwick [6], but does not use any predictive modeling.  
Chang, et. al investigated the use of a hardware memory management system using a 
bitmapped memory allocator, which requires linear storage overhead for the bitmap with 
regard to the size of the memory [7,8].  Wuytack et. al used decision trees to improve the 
throughput and behavior of memory management on high-throughput embedded network 
devices, however, the decision trees were derived analytically from knowledge about the 
specific data structures used [9]. 
 
3.1 Selected Paper Review 

In their paper entitled, “Predicting lifetimes in dynamically allocated memory”, 
Cohn and Singh describe their approach of using decision trees to tune memory 
management systems [10].  By better predicting memory block lifetimes, a memory 
manager can decrease CPU usage required for memory allocations, decrease memory 
fragmentation, and improve program cache locality. Their related work section is a bit 
short, but to give the authors some credit, little work was being done on memory 



management at the time and this paper was cited and extended in following years in other 
important works in memory management.  

Following the introduction, the authors describe the features selected for use in 
their decision tree.  Previous work has investigated using program flow analysis to 
predict memory lifetimes, but the authors argue that it is not just the program flow and 
functions, but rather the parameters; the same function called with different parameters 
may behave differently.  To take this into account, their decision tree’s classification is 
based on the top 20 machine words in the stack.  The authors find that use of the registers 
in the decision tree is insignificant. 

In distinguishing short-lived memory blocks from long term blocks from 
“permanent” blocks (lasting the duration of program execution), the memory manager 
can use different strategies optimized for the memory blocks’ lifetime.  However, false 
positives may be costly, as memory blocks allocated with a mispredicted lifetime may 
adversely affect many other allocations.  The authors assumed false positives and false 
negatives to have the same weight for ease of evaluation. 

The authors used the OC1 decision tree software.  The tree evaluation was based 
on a cost complexity heuristic, using 90% of the samples to build the tree and 10% to 
prune it.  Because the software did not provide the capability of using a custom heuristic, 
the authors used a boosting technique to include equal numbers of positive and negative 
examples by duplicating training examples.  They did not use the word boosting, perhaps 
because the term was not widely used at that point. 

The authors profiled a common set of benchmarks: Ghostscript, Espresso, Cfrac, 
Gawk, Perl, and GCC.  These programs were recompiled and linked against a slightly 
modified version of the standard C library that recorded when specific segments of 
memory were allocated and freed, along with the 20 words of stack trace. 
 The authors then compare the results of OC1 false positive and false negative 
rates to that of the only other work done prior to their paper (by Barrett and Zorn).  Cohn 
and Singh’s worst results are comparable, but the best results are far better predictors 
(e.g. 25.2% false negatives compared with 1.7% false negatives).  For predicting 
permanent memory allocations, their system had very good performance for 3 of the 4 
metrics. 
 To test the actual performance gained by using the decision tree, the authors 
implemented a slightly modified version.  If a specific memory allocation site only 
reserved memory for one type of use (short-term, long-term, permanent), the authors used 
the specific memory allocation algorithm.  If the memory allocation site’s uses were 
mixed, the authors used the decision tree to dynamically choose which algorithm it would 
use.  For most of the results, efficiency was increased by a small amount.  The Cfrac 
program, however, performed very poorly during long runs due to mispredictions.   

In this paper, the authors were the first to apply machine learning or data mining 
to memory management.  In the past 9 years, virtually no other groups have applied such 
methods to lower level memory management (several have extended the methods, but I 
have been unable to find any work on this problem outside of higher level garbage 
collection techniques).  I speculate that it may be due to the fact that most programs 
spend only a small fraction of their execution time performing memory management.  
Though exceptions do exist, it makes a tough case to sell when many programs would 



receive only a small percentage increase in execution speed from the added complexity of 
a decision tree-based memory manager. 

On the other hand, this work does seem somewhat incomplete.  The authors used 
only 6 programs for the initial benchmarking, and only used 3 of them for the 
performance analysis.  It would have also been interesting to isolate the time spent in the 
malloc and free functions before and after using the decision tree, as that would be a good 
indicator as to how their method would work for programs that perform large amounts of 
memory allocation.   

The authors were also severely limited by the available data mining algorithms 
and software.  They mentioned that they were unable to use their own evaluation 
mechanisms in the creation of the decision tree that would take into account the weights 
of false positives and false negatives.  Given the way many new programming languages 
and methods instantiate many objects and destroy them frequently, I think that such a 
memory allocation predictor may have greater impact.  I would be interested in seeing 
this work being redone with today’s data mining techniques in today’s environments, to 
see if it would yield better results. 
 
3.2 Data Mining Algorithms 
 The primary data mining algorithm used in this work is J48, a C4.5 algorithm 
based decision tree classifier implemented in Weka.  The algorithm attempts to maximize 
entropy gain when making each split in the decision tree.  C4.5 has been widely used, and 
due to its maturity, searching for papers on C4.5 reveals that most of the studies 
involving it are applying it to other domains.  Though entropy is used in the C4.5 
algorithm, there are a wide variety of successfully used interestingness measures to 
choose from [11].  Bagging, boosting, and randomization has been studied with C4.5, 
showing that boosting gives the best results, with randomization and bagging giving 
similar quality decision trees [12], but bagging is the best method for practical use due to 
boosting’s sensitivity to noise.  Though I had a large volume of data in this project, I used 
bagging by sampling the large data set with replacement.  In terms of decision tree 
theory, Fiat and Pechyony have recently explored some theoretical underpinnings for 
optimality [13]. 
 
4. Obtaining the Data 
 
4.1 Program Selection 
 To obtain useful memory allocation patterns, careful consideration went into 
deciding which programs to profile.  The programs must be diverse, because profiling ten 
programs that fulfill the same role would likely only show us a small subset of allocation 
patterns.  However, the scope of available programs is greatly limited by the processor 
simulator on which they will be required to run for certain performance evaluations.  The 
simulator has a very limited implementation of POSIX, without support for networking, 
multithreading, or X-Windows.  To be useful, programs must also have non-trivial 
memory allocation patterns.  For example, a program which allocates a small number of 
blocks upon initialization with no further memory allocation would not be affected by 
memory allocation latency.  The programs need to be open source as well, so that they 
can be later recompiled to run on the processor simulator. 



 The SPEC CPU 2000 benchmarks are a common standard for processor profiling.  
Despite the commonality, we only chose a couple of those measures, since many of them 
do not exhibit the aforementioned characteristics.  The final list of programs chosen is as 
follows: 
 
Name Description 
7zip data compression utility that uses a variety of compression 

algorithms 
ammp SPEC CPU 2000 benchmark 
bison CFG parser generator, run with the specifications of a Java language 

CFG parser source 
diffutils finds differences between text files 
espresso logic minimization solver 
gawk GNU Awk interpreter 
gcc optimizing C/C++ compiler (SPEC CPU 2000 benchmark) 
gzip data compression utility (SPEC CPU 2000 benchmark) 
netpbm image format translation library, run to convert still images to a 

compressed movie file 
perl interpreter for the Perl programming language, run with a script to 

do various text parsing 
splint C/C++ static security source analysis tool 
 
 
4.2 Data Collection 
 The data were collected by augmenting the standard C library malloc functions to 
log every call.  The obvious data to log is whether the memory is being allocated or freed, 
as well as the size requested for an allocation.  In addition, we logged the current time as 
measured in CPU clock ticks (zero representing the first memory allocation), allowing us 
to see memory allocation timing patterns.  We recorded the amount of time taken to 
perform the memory management task for future performance comparisons.  The address 
of each memory allocated or freed was logged as well.  This allows us to find when a 
specific block of memory was both allocated and freed, which would be required for 
memory lifetime analysis. 

We also recorded the calling address of each malloc and free, hoping to be able to 
associate particular allocation sizes with certain parts of the code.  After inspecting the 
data for many of the programs, I found the calling address attribute to be an unreliable 
indicator, which became more obvious after looking through the high level source code.  
Many programs use their own small allocation functions that call malloc and perform 
safety checks, but many also do not.  As common programming standards and languages 
continuously change and call stack analysis can become quite complex for our 
application, we decided that utilizing this measure would not be in our best interests for 
universal prediction. 
 Initially, we intended to use the simulator to gather cache activity to find access 
patterns.  Our hope was that the allocator could use cache access patterns to predict future 
access patterns and allocate memory to increase cache hits.  Other commitments on the 
part of the project leader forced this data collection out of the schedule (they also delayed 



my data from being collected for several weeks).  In hindsight, the cache access patterns 
would have added a great deal of complexity to the system and the analysis, and seems 
best suited for future work after a functional system is in order. 
 
5. Analysis 
5.1 Constraints on Memory Predictor 
 The memory system imposes several constraints that each affects prediction in a 
different manner.  One constraint is that all memory requests less than 16 bytes will be 
rounded up to 16 bytes, and all larger requests are rounded up to the next multiple of 8 
bytes.  This limitation is required for memory allocation efficiency, but also aids data 
mining slightly by somewhat discretizing the allowed sizes.  The system easily allows for 
the possibility of using larger memory blocks for smaller requests, so if the system 
predicts a larger size, they can be used even if wrong.  The predictor must be careful not 
to do this too often, or with sizes too large, otherwise the program will consume more 
memory than is required, suffer more page misses, and potentially suffer more cache 
misses. 
 A second constraint is that the memory predictor must be careful to not converge; 
it must be ergodic.  If the memory predictor applies any real-time machine learning 
techniques, it must be designed to disregard or unlearn old memory allocation patterns.  
Programs often have distinct phases.  If the memory allocation predictor’s training kept 
all of the results since the beginning of the program, it may continue to use patterns from 
the earlier phase in the later phases.  Occasionally this may be beneficial, but other times 
it may cause unreasonable predictions, severely hindering the performance of the 
memory manager. 
 The last major constraint is timing.  To be effective, the memory manager must 
not use large amounts of processing power and memory.  Any prediction algorithms must 
be relatively simple.  The memory manager can afford more complex calculations if it 
predicts with reasonable accuracy that it will not be receiving memory allocation requests 
for a longer duration. 
 
5.2 Sequential Analysis Attempt 
 Initially, I sought to break the stream of memory operations into phases, cluster 
the phases, and then find patterns that would be best predictors for each given phase type.  
To do this, I wrote a Perl script to combine the malloc’s and free’s that operated on the 
same address into the same memory allocation event.  Instead of having a separate malloc 
and free line, the allocation lines had the memory blocks’ lifetimes.  This was particularly 
helpful because the malloc and free contained very different information, and the free 
events did not contain the blocks’ sizes. 
 I investigated phase analysis as applied to intrusion detection systems, child 
growth, and low level instruction phases for processors.  Unfortunately, all of the phase 
recognition systems I investigated were very large and complex.  The complexity worried 
me on two fronts: the amount of effort it would take to implement the algorithms and also 
the amount of processing the memory manager can reasonably in predicting memory 
allocations.  Additionally, all the phase recognizers I encountered were able to utilize 
higher dimensional data than I had, so I wondered about the capability to recognize 
phases based only on memory allocation times and sizes.  I spent a bit of time 



qualitatively analyzing the data (staring at every graph I could come up with), and 
eventually decided that I should try another more promising approach. 
 
5.3 Collapsing Sequential Data 
 Given that the memory management predictor must make decisions based on the 
current situation, I decided to investigate collapsing each of the points in the time series 
into an element that represents everything that the predictor is likely to know about its 
situation.  By evaluating heuristics from the perspective of every point in the data, 
sequential dependencies can be removed, and each data point can be analyzed 
independent of the others. 
 The evaluation heuristics are best guesses at what types of aggregated measures 
that could be useful.  All of the aggregated measures were applied to the memory sizes 
after rounding according to the rounding requirements specified in section 5.1.  The 
complete list of metrics I created and evaluated is as follows: 
 
Name Description (all times are in processor cycles) 
size Size of the current memory allocation request 
previous_size Size of the previous memory allocation request 
time_since_last_alloc Time since last allocation of any size 
time_since_last_eviction In maintaining a least-recently-used eviction policy in a 

cache of the most recently used 8 sizes, this is the time since 
the last eviction was required. 

time_size_last_seen Time since a memory allocation request of this size was 
received 

last_free_this_size Time since a memory block of the given size was last freed 
(0 if has never been freed) 

entropy_of_last128 The entropy of last 128 memory allocation requests, 
computed with respect to allocation size probabilities. 
H(X) = -∑ p(x) log2 p(x), 
where p(x) is the probability of the given size out of the last 
128 sizes. 

entropy_of_last32 Same as entropy_of_last128, but with the previous 32 
memory allocation requests 

entropy_of_last8 Same as entropy_of_last128, but with the previous 8 
memory allocation requests 

count_of_last128 Number of memory allocation requests of the current size 
out of the last 128 requests 

count_of_last32 Same as count_of_last128, but with the previous 32 memory 
allocation requests 

count_of_last8 Same as count_of_last128, but with the previous 8 memory 
allocation requests 

time_til_next Time until the next memory allocation request will occur -
Used for training and evaluating. 

count_of_next128 If the frequency of the current size is 0 for the next 128 
memory allocation requests, then ‘none’. 
If the frequency is <= 1/3 of the 128, then ‘low’. 



If the frequency is <= 2/3 of the 128, then ‘medium’. 
If the frequency is > 2/3 of the 128, then ‘high’. 
Used for training and evaluating. 

 
These metrics were coded as part of a batch preprocessor that translated the raw 

data into both ARFF and CSV files for use in Weka and Excel.  The batch processor 
processed each of the data sets in its entirety (one per profiled application), and wrote out 
files with data elements that were sequentially independent, containing the metrics 
mentioned above.  Because the count_of_next128 and count_of_last128 metrics needed a 
span of 256 entries, several data sets were thrown out at this point because they contained 
too few elements (the data sets thrown out are not listed in section 4.1).  Ignoring this 
data is not problematic for a universal predictor because applications with few memory 
allocation requests will not be noticeably impacted by the increased overhead. 

The batch preprocessor also sampled the applications by randomly choosing 120 
of the data points from each of them, totaling 1320 data points from the 11 profiled 
applications in a single file for experimentation.  I wrote the batch processor in Perl for 
several reasons: Perl is excellent at text processing; Perl is good for rapid prototyping; 
and I am very experienced with the Perl language. 
 
5.4 Initial Analysis Using Weka 
 Earlier in the semester, before I had obtained my data, I experimented with both 
SAS and Weka.  I chose to use Weka for two primary reasons.  First, SAS does not have 
recent versions of its software available for Apple’s OS X.  And second, Weka was very 
easy to learn and very intuitive.  The only portion I for which I needed to read training 
materials was the KnowledgeFlow package.  I worked through several training tutorials 
with SAS.  Though SAS had more features than Weka, I found it comparatively clunky, 
difficult to use, and non-intuitive. 
 When first exploring the available algorithms, I wanted to choose algorithms that 
would reveal information to aid in the developing of a predictor.  Neural networks and 
other functional learning methods can predict numeric data.  However, many functional 
data mining methods do not easily illuminate relations within the data; they work for 
producing a result. 
 As mentioned earlier, it is possible for the predictor to utilize slightly larger 
memory blocks for smaller requests.  Coupled with the benefits of readability of 
classification algorithms compared to clustering algorithms, most notably decision trees, 
it seemed attractive to bundle the size requests into a smaller nominal set of data.  To 
discretize the sizes, I applied Weka’s supervised discretize method on the sampled data 
(using both count_of_next128 as the nominal type).  This yielded the results in the 
following table: 

Size Range Number of Samples 
(-inf-26] 655 
(26-308] 394 
(308-404] 79 
(404-1148] 21 
(1148-4088] 139 
(4088-inf) 32 



 Although this range is useful, it is not as practical for combining memory sizes, as 
they do not maximize efficiency as well as sums of larger powers of 2.  With this list in 
mind, along with the potential of reasonably oversized memory blocks and class versus 
array data sizes, I constructed the following categories: 
 

(0-24] very-small 
(24-64] small 
(64-192] medium-small 
(192-512] medium-large 
(512-1024] large 
(1024-4096] extra-large 
(4096-inf] huge 

 
 When I began experimenting with various algorithms, I tried using the size 
discretized and numeric.  To a small surprise, I found that discretized size to predict the 
future frequency of the size in allocation requests had no significant impact on the results.  
Nearly all the algorithms I tried (using parameters reasonable for our data set) had 
classification accuracy within a couple percentage points (most were in the neighborhood 
of 80-85% accuracy) when comparing discretized to numeric size values in predicting 
count_of_next128.  Though this indicates that discretizing of sizes may not be useful, it is 
required to use most non-function-based classifiers to predict the size of the next memory 
allocation requests. 
  
5.5 Evaluation of Algorithms 
 To choose which algorithm to base most of the decisions off, I wanted to try a 
variety.  I compared the following 9 algorithms for accuracy based on predicting 
count_of_next128 (with time_til_next removed from the input) using 10-fold cross-
validation: 
 
Algorithm Evaluated Accuracy Notable Parameters 
Rule Based: JRip 86.2879 Use 10 rules 
Rule Based: Conjunctive Rule 
(single rule learner) 77.1212  

Tree Based: J48 86.5152 

0.000001 confidence factor 
(high threshold, producing a 
small tree) 

Tree Based: Random Forrest 88.3333 10 trees 
   
Lazy: IB1 85.4545  
Lazy: LWL 79.1667  
Boosting: AdaBoost w/ J48 tree 87.5758  
   
Network Based: Multilayer 
Perceptron 86.0606  
Network Based: Bayes Network 83.9394  

 



  
All of the classification algorithms tested yielded similar results.  The network-

based algorithms, especially the multilayer perceptron network took the longest to 
compute.  Because this prediction model must run in a limited computing environment, 
so simple-to-compute models are preferable.  Human readability of the results is also 
very preferable, because it allows for a straight-forward implementation of the predictor, 
as well as observable justifications for the predictor’s behavior.  
 Because the primary goal of this analysis is to illuminate memory allocation 
prediction strategies, it is obviously very useful to know how well the heuristics compare 
for initial classification.  By using the measure of information gain, the heuristics are 
ranked as follows: 
 
Prediction Target Information Gain Heuristic 

0.976 count-of-last-128 
0.976 count-of-last-32 
0.976 count-of-last-8 
0.531 entropy-of-last-128 

0.49 entropy-of-last-32 
0.45 entropy-of-last-8 

0.337 time-since-eviction 
0.276 size 
0.249 time-last-seen 
0.229 time-since-free 
0.217 previous-size 
0.141 time-since-alloc 

count_of_next128, discretized size 

  
0.3418 count-of-last-128 
0.3418 count-of-last-32 
0.3418 count-of-last-8 
0.2529 entropy-of-last-32 
0.2223 entropy-of-last-8 

0.22 entropy-of-last-128 
0.173 size 

0.1419 time-since-eviction 
0.1248 time-since-free 
0.1134 time-last-seen 
0.0897 time-since-alloc 
0.0684 previous-size 

count_of_next128, numeric size 

  
0.526 time-since-alloc 
0.431 time-last-seen 
0.429 size 
0.375 previous-size 
0.222 time-since-eviction 
0.185 entropy-of-last-128 
0.184 time-since-free 

0.18 count-of-last-32 
0.18 count-of-last-8 
0.18 count-of-last-128 

0.165 entropy-of-last-32 

time_til_next 

0.134 entropy-of-last-8 



   
1.1674 previous-size 
0.6217 time-last-seen 
0.5634 time-since-alloc 
0.5306 count-of-last-32 
0.5306 count-of-last-128 
0.5306 count-of-last-8 
0.5204 time-since-eviction 
0.2932 entropy-of-last-128 
0.2654 time-since-free 
0.1383 entropy-of-last-32 
0.0992 entropy-of-last-8 

size 

  
 
 From the initial analysis, it shows that the count_of_last128 is the best predictor 
of the frequency of the current size occurring in the next 128 allocations, as are counts of 
the previous 32 and 8.  Discretization of size had very small affects on the ordering.  It 
was also interesting that the best predictor of time_til_next was time_since_alloc, and 
size was previous_size.  These results indicate the tendency for memory allocation 
patterns to follow the same patterns on the small scale, but provide interesting 
information as to what parameters are useful when the patterns are not as regular. 
 
5.6 Results 
 When creating models for optimizing program execution, care must be taken not 
to over-fit the profiles.  Optimizing for one or two particular programs is usually easy, 
but optimizing such that most programs will run faster is much more difficult.  Coupling 
this with Occam’s razor, I sought the simplest decision trees that would give me good 
results.  I chose to use Weka’s J48 algorithm decision tree classifier, which is based off 
the C4.5 decision tree algorithm because it is widely used and seemed to be very 
effective.  
 By trying different confidence factor thresholds in decision tree pruning, I found 
that decreasing the confidence threshold to .000001, the decision tree was very small, but 
still provided results within a few percentage points of large confidence thresholds. 
 For the count_of_next128 prediction using discretized sizes, Weka produced:



 
Decision Tree count-of-last-128 <= 86 

|   count-of-last-128 <= 35: low (387.0/63.0) 
|   count-of-last-128 > 35 
|   |   entropy-of-last-32 <= 0.195909: high (17.0/1.0) 
|   |   entropy-of-last-32 > 0.195909 
|   |   |   time-since-free <= 240336208: medium (218.0/50.0) 
|   |   |   time-since-free > 240336208: low (10.0/1.0) 
count-of-last-128 > 86: high (688.0/64.0) 

Accuracy Correctly Classified Instances        1115               84.4697 % 
Incorrectly Classified Instances       205               15.5303 % 
A B C D � Classified as 
2 35 0 0 A=none 
0 332 32 15 B=low 
0 25 147 60 C=medium 

Confusion Matrix 

1 12 25 634 D=high 
  

This result shows that the best predictor is how frequently the size has occurred 
before, but that if the count is mid-range, then it depends more on how many different 
sizes are being allocated in the last 32 allocations. 
 For the count_of_next128 prediction using numeric sizes, Weka produced the 
following decision tree: 
 
Decision Tree count-of-last-32 <= 13 

|   count-of-last-128 <= 34: low (349.0/45.0) 
|   count-of-last-128 > 34 
|   |   count-of-last-8 <= 5 
|   |   |   size <= 36: medium (84.0/30.0) 
|   |   |   size > 36: low (11.0) 
|   |   count-of-last-8 > 5: high (7.0/2.0) 
count-of-last-32 > 13 
|   count-of-last-128 <= 87 
|   |   count-of-last-32 <= 25: medium (154.0/30.0) 
|   |   count-of-last-32 > 25: high (33.0/11.0) 
|   count-of-last-128 > 87: high (682.0/73.0) 

Accuracy Correctly Classified Instances        1096               83.0303 % 
Incorrectly Classified Instances       224               16.9697 % 
A B C D � Classified as 
0 33 0 1 A=none 
3 317 37 22 B=low 
0 30 157 66 C=medium 

Confusion Matrix 

0 6 26 622 D=high 
  

These results are interesting in how they differ from the results produced with 
discretized sizes.  This tree uses all the ranges of counts, and uses sizes for some fine 
tuning. 



For time_til_next prediction using numeric sizes (but descritizing the data set in 
order to classify time_til_next), Weka produced: 
 

Decision Tree time-since-alloc = (-inf-4622]: (-inf-4598] (527.0/145.0) 
time-since-alloc = (4622-27924]: (4598-28286] (510.0/183.0) 
time-since-alloc = (27924-123326] 
|   entropy-of-last-32 = (-inf-0.481238]: (28286-134414] (78.0/29.0) 
|   entropy-of-last-32 = (0.481238-1.221548]: (4598-28286] (9.0/5.0) 
|   entropy-of-last-32 = (1.221548-1.570624]: (4598-28286] (6.0/3.0) 
|   entropy-of-last-32 = (1.570624-inf): (4598-28286] (36.0/10.0) 
time-since-alloc = (123326-13316372]: (134414-inf) (146.0/30.0) 
time-since-alloc = (13316372-inf): (28286-134414] (8.0/1.0) 

Accuracy Correctly Classified Instances         910               68.9394 % 
Incorrectly Classified Instances       410               31.0606 % 
A B C D � Classified as 
382 152 5 1 A= (-inf-4598] 
129 358 4 13 B= (4598-28286] 
16 39 52 22 C= (28286-134414] 

Confusion Matrix 

0 10 19 118 D= (134414-inf) 
  

The accuracy is not as high for predicting time_til_next, but predicting the 
attribute is not as important as the others.  The decision tree shows that programs tend to 
allocate memory at fairly constant rates.  The only exception is if a program is having 
mid-range times between allocations, it depends more on the number of different sizes 
being allocated.  This makes intuitive sense in that if a program is having some time 
between allocations, it may be doing different tasks, and the variety of those tasks would 
predict how long until the next allocation. 

For size prediction (using a slightly smaller confidence factor of .0000001), Weka 
produced:



 
Decision Tree previous-size <= 304 

|   time-last-seen <= 46648 
|   |   previous-size <= 24: very-small (523.0/31.0) 
|   |   previous-size > 24 
|   |   |   previous-size <= 64 
|   |   |   |   time-since-free <= 6096 
|   |   |   |   |   count-of-last-8 <= 0: medium-small (2.0) 
|   |   |   |   |   count-of-last-8 > 0: small (31.0) 
|   |   |   |   time-since-free > 6096 
|   |   |   |   |   count-of-last-128 <= 39 
|   |   |   |   |   |   time-since-free <= 65129880: small (59.0/11.0) 
|   |   |   |   |   |   time-since-free > 65129880: very-small (4.0) 
|   |   |   |   |   count-of-last-128 > 39: very-small (52.0/1.0) 
|   |   |   previous-size > 64 
|   |   |   |   time-last-seen <= 7664: medium-small (42.0/1.0) 
|   |   |   |   time-last-seen > 7664 
|   |   |   |   |   count-of-last-8 <= 7: very-small (36.0/8.0) 
|   |   |   |   |   count-of-last-8 > 7: medium-small (10.0) 
|   time-last-seen > 46648: small (281.0/115.0) 
previous-size > 304 
|   previous-size <= 448: medium-large (83.0) 
|   previous-size > 448 
|   |   count-of-last-128 <= 95 
|   |   |   previous-size <= 1024 
|   |   |   |   count-of-last-128 <= 31: large (19.0/8.0) 
|   |   |   |   count-of-last-128 > 31: very-small (6.0) 
|   |   |   previous-size > 1024: huge (36.0/10.0) 
|   |   count-of-last-128 > 95 
|   |   |   time-since-alloc <= 30204: extra-large (5.0/2.0) 
|   |   |   time-since-alloc > 30204: extra-large (131.0) 

Accuracy Correctly Classified Instances        1098               83.1818 % 
Incorrectly Classified Instances       222               16.8182 % 
A B C D E F G �Classified as 
565 75 6 2 1 2 3 A=very small 
38 233 0 1 1 1 1 B=small 
8 38 52 2 2 0 1 C=medium-small 
1 8 0 83 2 0 0 D=medium-large 
2 6 0 0 9 2 0 E=large 
2 5 1 0 3 131 6 F=extra-large 

Confusion 
Matrix 

0 1 0 0 0 1 25 G=huge 
 
 Attempting to predict the size is a little more difficult than the other attributes, 
and thus produces a bigger decision tree.  The dominant factor is the previous size, and 
then is decided by how many times it the particular size was seen (which would need to 



be evaluated for each of the different sizes and compared for accuracy).  Some of the 
lower nodes in the decision tree decide on timing, but those seem to be less significant. 
 
5.7 Evaluating the Model 
 In order to automate the evaluation of the model against all of the sources 
independently, I needed to use Weka’s KnowledgeFlow interface.  This interface allows 
the user to develop a pipeline of data processing and manipulation.  The following figure 
shows the model I developed for evaluating the accuracy of count_of_next128 with 
discretized size:  
 

 
 
In this figure, the data flows from left-to-right.  The top left ARFF loader loads the file 
containing the sampled memory allocations from all of the programs.  The unnecessary 
fields are removed, source file and time_til_next, to make sure they are not used by the 
classifier.  The Class Assigner module then picks count_of_next128 as the class 
differentiator.  The data’s type is converted to that of a training set by the 
TrainingSetMaker, and then sent to the J48 classification module.  The bottom left path is 
almost identical to the top left path, except it loads the full test data for an individual 
program, and changes it to a test set.  The immediate TextViewer coming out of the J48 
classifier produces the decision tree.  The results of the classification are sent to the 
ClassifierPerformanceEvaluator to determine accuracy and error measures, and the 
results sent to a TextViewer.  The KnowledgeFlow models for evaluating the prediction 
of size and count_of_next128 with numeric data are almost identical.  A testing system 
was not built for time_til_next.  The main reason was that we deemed it as less important, 
since it is not as critical for performance, and it probably would not have been worth the 
effort (a meaningful discretization of time_til_next would have been required to use the 
J48 classifier).  The results of the measures are in the following table:



 

Program Name 

count_of_next128 
prediction accuracy 
(discretized size) 

size prediction 
accuracy 

count_of_next128 
prediction accuracy 
(numeric size) 

7zip 76.4706 66.5991 76.9439 
gawk 81.2883 80.184 80.9202 
netpbm 69.7867 90.7673 68.9908 
ammp 97.9884 99.9683 98.1943 
gcc 88.6121 88.3514 88.8402 
perl 89.5768 57.3246 89.4866 
bison 86.5459 80.4585 85.8227 
gzip 85.6368 80.3333 85.7282 
splint 87.9127 87.123 87.3335 
diffutils 100 100 100 
espresso 85.4824 76.1948 84.3102 

 
 The count_of_next128 evaluations were fairly good across all the measures.  The 
lowest accuracy was netpbm, which was still at 69.8%.  Size prediction accuracy had 
slightly more disparity, the lowest being perl at 57% accuracy.  To see if perl is easily 
predictable, even though it performs only moderately well on this model, I tried 
classifying it on its own.  With the same low confidence factor of .0000005, Weka 
produced a large decision tree of 333 nodes, with accuracy of 87%.  I could not decrease 
the threshold any lower without Weka failing to produce any decision tree at all.  Perl 
may be predictable, but it is too complex and too niche (it is only one program) for us to 
consider such models. 
 
5.8 Discussion 
 Before doing this investigation, we had several hypotheses.  We thought that 
determining the common frequently allocated sizes would be a good predictor of future 
frequencies.  This hypothesis was confirmed, most notably by the strength of the previous 
counts used in deciding the frequency of a particular size in the next 128 allocations.  We 
also thought that by discretizing allocation size, we would be able to better our 
predicting.  In this study, however, I found that this is only partly true.  Discretization of 
sizes is required in order to use any easily understandable classifier model in order to 
predict future sizes, which conforms to our initial hypothesis.  Comparing discretization 
to numeric treatment of sizes for predicting the future frequency of a given size does not 
seem to improve the results.  Discretizing the size does change the structure of the 
decision tree and relative importance of different attributes, which is interesting.  With 
numeric results, the decision tree took into account the variety of sizes being allocated 
(entropy), whereas the discretized decision tree mostly dealt with past occurrence 
frequencies.  Perhaps it would be best to combine the two models.  This will need to be 
studied further. 
 This study did confirm our belief that memory allocation sizes can be predicted 
with some accuracy.  The fact that the prediction of future frequency is more accurate 
than the prediction of the next allocation size reinforces the initial design of having a pool 
of pre-allocated sizes waiting to be allocated. 



 Ultimately, the execution speed will be the final determining factor as to the 
confidence of these results.  Even with our knowledge of importance of attributes in 
predicting memory allocation, the system will most likely require a good deal of fine 
parameter tuning, and evaluation on more different programs.  We also need to watch for 
any programs that perform pathologically badly under our model, but obtaining any 
reasonable sample of such a large pool of used computer programs is virtually 
impossible. 
 These decision trees will be used in creating heuristics for our predictor. 
 
6. Conclusion 
 This study of methods to predict memory allocation patterns had good results.  It 
showed that memory allocation prediction is worthwhile and predictable, and also 
provided easily to understand heuristics from which to base our predictor.  The decision 
tree classifications worked as well as any other type of predictor behavior.  We will 
continue this work on memory allocation prediction with this information, and hopefully 
be able to hide the majority of the additional latency required by our memory allocation 
system. 
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