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ABSTRACT
Finding the best methods of allocating transmission rights on the
electromagnetic spectrum is a challenging problem. To better al-
locate the spectrum to increasing demand, the FCC has recently
been deregulating spectrum trading, allowing for more open mar-
kets. Additionally, current findings indicate that customer loyalty
to wireless service providers is most heavily influenced by service
satisfaction. In this paper, we present a market-based bandwidth
allocation model which performs short term leases between service
providers. We also present a valuation model for bandwidth for use
in these markets based on expectations of customer satisfaction.
Customer satisfaction is modeled as the threshold of the number of
blocked channel requests (BCR) that will quantifiably impact the
customers’ perception of the service. Our model is shown to scale
well and increase service providers’ utility as measured by lease
revenue and customer satisfaction.

1. INTRODUCTION
Determining the best methods of allocating transmission rights on
the electromagnetic spectrum is an old and difficult problem. Spec-
trum transmissions entail continuous ranges of frequency, transmis-
sion power, location, direction, and time. Different groups of users
of the spectrum have different goals, including long range broad-
casts, short range signaling, wireless Internet, cellular telephony,
and emergency communications. These users’ goals are met by in-
tegrating a wide variety of devices such as towers, satellites, and
hand held devices. Proper allocation of the spectrum is important
to prevent devices from interfering with each other in many ap-
plications such as long-range communication. On the other hand,
regulating the spectrum as a public good has worked well for short-
range household devices.

If the problem of spectrum allocation was not difficult enough,
transmission rights have been marred by problematic historical de-
cisions that still remain [4]. For example, until 1993 in the USA,
the Federal Communications Commission (FCC) assigned spec-
trum based on a political process, which was not always optimal.
Since 1993, the FCC has been auctioning unused portions of the
spectrum. However, much of the current spectrum is underuti-
lized due to spectrum allocation choices from as far back as the
late 1920’s. Economists have been arguing for market-based ap-
proaches to spectrum allocations. Most relevant to our work is
the FCC’s 2003 decision to permit long-term spectrum leasing [5].
While current regulations require sufficient paperwork and lead
time for leases, we suggests further loosening of these restrictions.
For comprehensive treatment of the arguments for market-based
spectrum allocation and the relevant history in the USA, we refer
the reader to [4]. Though mentioned in the context of the FCC, we

feel that our work is applicable to other countries as well.

In this paper, we focus on efficiently allocating spectrum to service
providers (carriers) in the same location and similar transmission
power (a cell). The services all utilize multiples of a common quan-
tum of bandwidth, which we will refer to a channel. This is most
readily applicable to wireless telephony, where each voice call con-
sumes a basic channel, and data calls consume a basic channel plus
dynamically allocated supplementary channels. It is also applicable
to Wi-Fi, where each connection is one channel. We use Poisson ar-
rival and departure processes to approximate future unknown usage
models from wireless Internet service providers.

The model we present here is intended to be a replacement for
current roaming practices. Roaming practices in the USA involve
agreements between providers to allow customers of one provider
to use the network of the other provider. While these agreements
often provide mutual benefit to both providers, large providers can
use these agreements anti-competitively to prevent new entrants to
the market. While an open market for trading bandwidth is not
without its concerns, we argue that it is better than the current prac-
tices for several reasons. First, because usage of each slice of the
spectrum (or code with respect to CDMA) is directly owned or
leased, each owner or leaser can be held accountable for its trans-
missions. Second, the market forces incumbents to compete with
new entrants on price rather than secretive reciprocal contracts. In-
cumbents will instead be forced to lease their bandwidth on an open
market in order to realize the gains of sharing access to incumbents’
networks. Third, very short term leases will maintain efficient uti-
lization of the spectrum.

Current findings indicate that customer satisfaction is the primary
influence in customer loyalty in the domain of wireless telephony
[9]. Though quality of service (QoS) and other factors contribute to
customer satisfaction, one of the primary factors is blocked channel
requests (BCRs). With respect to QoS, BCRs occur when a level of
service cannot be allocated. We derive the service provider band-
width valuations from the negative impact of BCRs. While we use
this valuation model within our market model, the two models are
independent.

A further constraint is that, in order to have an open market be-
tween service providers, their underlying technology must be com-
patible. FDMA (frequency division multiple access) makes band-
width trading simply trading slices of the spectrum. However, with
modern technologies, the commodity being traded becomes more
complicated. For example, TDMA (time division multiple access)
and FDMA are both used by the GSM standard, where customers’



transmissions are divided up between different time slots and fre-
quencies. In this scenario, the service providers would trade in one
channel’s worth of time slices. In the spread-spectrum technol-
ogy CDMA (code division multiple access), the traded commodity
would be the codes representing channels. Though it may not be
currently possible to trade bandwidth in small allotments with dif-
fering technologies in our model, future unification of transmission
standards and greater demand for bandwidth will lessen this con-
straint. Due to the aforementioned complications in relating spec-
trum to actual communications channels and to keep our arguments
generic, we will refer to what is being traded as bandwidth, rather
than spectrum.

The rest of this paper is organized as follows. In Section 2, we
compare and contrast other work related to our model. In Section
3, we present our model, first in terms of the bandwidth market,
then in terms of bandwidth valuations. We simulated this model,
and the results are covered in Section 4. Finally, in Section 5 we
draw conclusions from our findings.

2. RELATED WORK
The topic of utilizing markets to control the allocation of network
traffic has been explored in many ways, but most often in terms of
QoS. [17] developed a QoS market to optimize allocation based on
user preferences and services. [15] investigated similar QoS mar-
kets with a multi-level market, and [6] explored market bandwidth
management in backbone Internet service providers.

QoS typically works on the level of individual packets to ensure
data throughput rates for a communication session, whereas our
model focuses on the level of communication channels to ensure
service providers have the bandwidth their customers require. [7]
also focused on communication channels in implementing an (M+1)st
price auction between customers competing for connections with
different QoS. However, Ibrahim’s work differs from the scope of
our work as it does not consider multiple service providers.

Though market-based resource management obviously works well
in real-world monetary systems, it has been deployed in relatively
few automated network environments. [12] deployed such a sys-
tem for managing time on a wireless sensor network testbed. They
concluded that the market yielded better results than traditional pro-
portional allocation or batch scheduling, despite strategic behaviors
demonstrated by its users.

[10] explore the broader economic interrelationships in bandwidth
pricing with respect to common bandwidth pricing techniques, but
do so on a broad timescale with a macroeconomic scope.

Technical issues of secondary usage of the electromagnetic spec-
trum, which would allow parties to lease or otherwise license un-
used blocks of the spectrum, are explored by [18]. [3] suggests
that in order for a secondary market to succeed, it will need to fa-
vor market liquidity by reducing the barriers to trade, and utilize
an electronic call market. With respect to Bykowsky’s suggestions,
our work assumes the former and implements the latter.

Peha and Panichpapiboon make the case for allowing secondary
devices to directly negotiate their spectrum usage [14]. Spot mar-
kets allow participants to directly and instantly trade resources for
money. While their method is efficient in utilizing spectrum re-
sources, it complicates billing and payments, as well as makes ac-
counting and tracking accountability more difficult.

[20] extend Peha and Panichpapiboon’s work by presenting an ar-
chitecture to manage authentication in secondary wireless markets.
Their model, like that of [14], uses spot markets which allow sec-
ondary users to directly negotiate spectrum for their own use with
the providers. This is in contrast to our model, which is based on
a secondary market of primary users at regular intervals. Zhou et
al. also derive an optimal clearing price for bandwidth trading in
terms of the Erlang Loss Formula (also known as Erlang B). One
of the primary limitations of their cost model is that it assumes the
relationship between utility and blocking probability is linear. Ad-
ditionally, the Erlang Loss Formula does not measure or account
for multiple BCRs given to the same customer. Our model is not
limited in these regards.

[1] model the blocking probability in terms of call arrival rate, and
present two algorithms to allocate calls to nearby base-stations.
Their model is limited, however, in the sense that it only consid-
ers call arrival rate, making it inaccurate for circuit-based switch-
ing, and the load balancing between base-stations does not consider
different service providers.

With regard to spectrum allocation, [13] argues that the FCC should
maintain ownership and continually lease the spectrum. Our pro-
posal is similar to Noam’s model in that we require the spectrum to
be leased or owned in order to use it. However, our proposal dif-
fers in that spectrum ownership is maintained as it is currently, and
on the clearing mechanisms. The customer valuation model and
market details we present would be applicable to Noam’s proposed
spectrum management, but may need to be adapted depending on
the market clearing mechanisms employed.

3. MODEL
3.1 Customer Model
The customers are situated in a set of tessellated hexagons, as is
typically used to represent wireless telephony cells. Each customer
belongs to exactly one service provider, and may only make con-
nections using that provider’s resources. Every cell has a fixed
amount of bandwidth, with each provider owning a fixed portion
of the bandwidth. Providers may lease bandwidth to any other
provider, but the bandwidth cannot move from one cell to another.

Customers originate connections, release connections, and move
from cell to cell, all at specified rates with exponential distributions.
Every connection requires one channel of bandwidth. When a cus-
tomer moves from one cell to another with a connection in progress,
this is called a handoff. During a handoff, the channel is acquired in
the destination cell and released in the source cell. Once the number
of channel requests (handoffs and connection originations) is equal
to the provider’s available bandwidth, any subsequent channel re-
quests will be blocked until channels are free again. An illustrative
example of this model is depicted in Figure 1, where Provider C in
the lower right cell will block 1 connection.

3.2 Bandwidth Market
Due to the competitive business of wireless services, providers may
be unwilling to share their valuations of bandwidth with their com-
petitors. To address this desire, we employ a sealed bid double
auction with a uniform clearing price.

[11] proved that incentive compatibility (incentive to bid honestly)
cannot be maintained for both buyers and sellers without subsidies.
Additionally, [19] extended this work by showing that no incen-
tive compatible mechanism exists for multi-unit allocations with



Provider A: 21/39(0)

Provider B: 20/37(8)

Provider C: 10/15(3)

Provider A: 17/40(0)

Provider B: 12/38(0)

Provider C: 7/12(2)

Provider A: 12/22(2)

Provider B: 5/16(8)

Provider C: 12/30(0)

Provider A: 20/59(0)

Provider B: 14/18(5)

Provider C: 6/5(3)

Figure 1: Each cell contains providers and customers for each
provider. This figure is a random example, in the format
of Provider Name: requested bandwidth / available bandwidth
(leased bandwidth).

uniform-price. Without an incentive-compatible mechanism, the
bidders may have an incentive to behave strategically, reducing ef-
ficiency from the idealized case. Despite the strategic friction, it is
widely accepted that markets provide an effective means of reallo-
cating resources.

To maintain confidentiality of the bids, two methods may be used
to host the auction. The first would be to have an auction server
hosted by a trusted, impartial third party, whether private or gov-
ernment owned. This has the benefit of accountability, but entails
cost and management overhead. The second approach is to use a
distributed (M+1)st price auction protocol, such as the one devised
by [8]. The service providers could each maintain their share of
servers as auctioneers without the need for third parties. This pro-
tocol keeps bids private and determines correct winners, as long as
a sufficient number of auctioneer servers are reputable.

The double auction generalizes traditional first and second price
auctions to M sell offers and N buy offers from any combination
of buyers and sellers. All of the bids (buy and sell offers) are ranked
by price. The clearing price, that is, the price at which all transac-
tions for that round are made, is computed as kpM+1 +(1−k)pM ,
where px is the xth highest price. The price range between pM+1

and pM is where supply and demand are balanced. In this study,
we used the value of k = 0.5.

Once the clearing price has been found, buyers with bids at or above
the clearing price will purchase the commodity from the sellers
with offers at or below the clearing price for the amount of the
clearing price. As buyers and sellers may not be balanced, the buy-
ers with the highest bidding prices and sellers with the lowest of-
fering price trade.

In our model, service providers reevaluate their valuations at reg-
ular intervals on the scale of several minutes, though incorporat-
ing historical information from other scales such as days or weeks
may also work well. Because our model assumes customer con-
nection and movement rates will be the same until the next band-

width market session, the market clearing frequency should maxi-
mize the accuracy of predicting and tracking customer connection
and movement rates. Having auctions clearing every several min-
utes is long enough to allow for a clear distinctive ownership of
bandwidth. At the same time, several minutes is short enough such
that if a customer turns on a device in a cell where the provider has
no other known customers, only a few minutes will lapse before
the provider can lease the bandwidth and provide service. Com-
mon channels to track and report the location of customers to their
respective providers would be required.

In each auction, each service provider places bids into the market
to buy and sell leases of a unit of bandwidth. While companies
may not trust their automated systems with large unmonitored pur-
chases, the cost of a mistake of a 30 minute lease would be com-
paratively minor, and the bidding system could be taken offline if
problematic.

To facilitate practical trading, bandwidth should be divided up into
either individual usable communication channels, or small groups
of communication channels. Because all blocks of bandwidth are
considered equal, the valuations define how beneficial each addi-
tional unit of bandwidth would be for the next time interval. The
valuation attributed to each incremental unit of bandwidth is the
additional utility of having that unit of bandwidth compared to not
having it. Further details of how the valuations are calculated are
provided in section 3.3.

Providers calculate the valuation for each unit of bandwidth avail-
able in the cell before participating in the market. If a provider al-
ready owns t units of bandwidth, then the highest t marginal values
are sell offers, and the remaining marginal values are buy offers.

As an example of pricing on the bandwidth market, consider a
provider with very little traffic compared to the bandwidth it owns.
The channels that the provider needs to accommodate its customers
would be bid to sell at relatively high prices, as it would take a
large incentive for the provider to sell this bandwidth. The provider
would place channels that exceed its expected requirements on the
market at lower prices. All the provider’s buy bids would be very
low prices, as it will likely not need the additional bandwidth. Con-
versely, a provider with heavy traffic would place high value on
channels it owns, and some of its buy bids would have high prices,
as it would be likely to run out of bandwidth from its customers’
demand.

3.3 Bandwidth Valuation
The utility of bandwidth in our model is the cost of the detriment
to the customers as modeled by the provider. We consider all situa-
tions for one customer, compute the expected value of the detriment
to that customer, and then multiply it by the number of customers
in the cell. Our model’s input includes the current number of cus-
tomers, k, channel request and release rates, µreq and µrel, arrival
and departure rates of customers to the cell, µarr and µdep, number
of channels currently in use by customers, e, and the total band-
width, t. In this section, we derive the expected cost of BCRs on an
individual customer, and then compute the expected utility of the
specified amount of bandwidth, based on the BCR’s cost in terms
of model inputs.

We first examine an individual customer’s circumstances. When
originating a new connection or moving to another cell with a con-
nection in progress, a customer requests a channel from his/her



provider. If all of the provider’s channels in the cell where the
customer is located are in use, then the customer’s channel request
is blocked.

We assume that each customer has a threshold of BCRs at which
the customer will either discontinue service (perhaps transferring
to another provider) or incur some form of monetarily quantifiable
dissatisfaction. We refer to the event at which the customer reaches
a quantifiable dissatisfaction level as a critical incident. We further
assume that the customers’ distribution of dissatisfaction thresholds
follows a normal distribution, though this may be easily changed.
For use in real-world cases, this distribution may be empirically
obtained by surveys, and would need to account for factors such as
the distributions of customers’ tolerances and usages of the system.
Given our assumptions, the probability that a customer will incur
a critical incident thus follows the cumulative density function of
the normal distribution, Φ, with a mean of b channels and standard
deviation of σ, given b BCRs, can be written as

Φ(
b− b

σ
). (1)

Given a certain number of BCRs over a period of time, we assume
that each BCR is given randomly to customers requesting a channel
for a new connection or handoff. The number of different permuta-
tions with replacement that b BCRs can be allocated to c customers
is cb. We chose to use permutations with replacement because a
customer could make and release several connections within the
interval between market clearings. While permutations without re-
placements would not capture the possibility of a customer incur-
ring multiple BCRs, it would be more appropriate for very short
market cycles, where each customer would not have the opportu-
nity to place a second channel request. If we isolate one customer,
we can compute the probability of that customer having i of the b
BCRs. The number of permutations of the b − i remaining BCRs
distributed among the c− 1 customers is (c− 1)b−i. Additionally,
we must account for the different ways of choosing the i BCRs,`

b
i

´
. The probability, Q, of a customer having i BCRs is the num-

ber of permutations of the customer having i BCRs divided by the
number of possible permutations of BCRs, expressed as

Q(b, c, i) =

 
b

i

!
(c− 1)b−i

cb
. (2)

Using the probability of receiving i BCRs, Q, to weight the cus-
tomer’s probabilities of a critical incident, we can find the expected
probability of a given customer incurring a critical incident given b
BCRs among c customers. Multiplying this by the number of cus-
tomers, c, gives us the number of expected critical incidents given
b BCRs. This can also be multiplied by the utility loss of a critical
incident, ν. The expected utility loss of critical incidents is thus

L(b, c) = νc

 
bX

i=0

Φ(
i− b

σ
)Q(b, c, i)

!
. (3)

Because we want to find the probability of each number of simul-
taneous channels in use or current customers in the cell, we make
some assumptions to simplify computations and increase scalabil-
ity. We assume that customer channel requests and customer chan-
nel releases are Poisson processes. This assumption that channel
releasing is a Poisson process follows from the Poisson channel
requests process and an assumption of exponentially distributed

channel hold times. While other distributions are more accurate,
the exponential distribution is a decent approximation to call hold
times [2], and greatly simplifies our computation. As wireless In-
ternet connections are increasingly used for longer durations as pri-
mary Internet connections, we argue that Poisson arrival and depar-
ture processes provide a more generic framework than current data
models for wireless telephony.

To find the probability that the number of connections has varied by
each possible amount, we employ the probability distribution func-
tion of the difference between two Poisson processes as derived by
[16]. The probability function is expressed as

Pk(µ1, µ2) = e−(µ1+µ2)

„
µ1

µ2

«k/2

Ik(2
√

µ1µ2), (4)

where k is the integer net change in number of occurrences (arrivals−
departures), µ1 and µ2 are the arrival and departure rates respec-
tively, and Ik(z) is the modified Bessel function of the first kind.

From these formulae, we construct a model representing the ex-
pected utility of a provider based on the number of critical inci-
dences. L(b, c) must be weighted to correspond with the probabil-
ity of having the number of customers in a given cell as well as the
probability of having the number of BCRs. To account for these dy-
namics, the model needs the current values of number of customers
in the cell, c, number of channels currently in use, e, and total num-
ber of channels available, t. Each of these three parameters is with
respect to a given service provider.

For a specified number of customers in the cell, k, channel request
and release rates, µreq and µrel, number of customers in the cell
at the time when µreq and µrel were measured, c, and specified
number of current channels in use, j, the probability of exceeding
the bandwidth is given by Pj−e(

k
c
µreq,

k
c
µrel). This represents the

probability of the number of channels in use changing by j−e. This
probability can also be interpreted as the expected fraction of time
that the system spends in that given state. The values of µreq and
µrel are assumed to correlate with the number of customers, thus
are scaled by the change in customers, k

c
. The number of BCRs is

represented by j − t, and channel requests are only blocked when
j > t. Weighting the utility of critical incidents for a given number
of BCRs can therefore be written as

Û(t, k, e, c, µreq, µrel) =
∞X

j=t+1

Pj−e(
k

c
µreq,

k

c
µrel)L(j − t, k). (5)

Similarly, the formula must be weighted with the probabilities of
having different numbers of customers in each cell based on the
customer movements. Each customer has a probability of whether
it will move to a new cell or stay in its current one, which yields a
sum of binomial distributions for the expected number of customers
in a given cell. We approximate this binomial distribution with a
normal distribution1 in order to easily sum the expected arrivals and
departures, as normal distributions may be easily summed. For ev-
ery cell, n, each service provider knows the number of customers
in that cell, cn. To find the expected number of customers in a
given cell, a provider can use the probabilities, pn, that a cus-
tomers would come from cell n (or stay in the current cell) to
1The normal distribution is an effective approximation of the bi-
nomial distribution for large populations with non-trivial probabil-
ities.



find µcust =
P
∀n cnpn. Similarly, the standard deviation may

be found as σcust =
P
∀n cnpn(1− pn). Applying a continuity

correction of ± 1
2

to the normal distribution on the customer move-
ment process, we can arrive at an expected utility of a given amount
of bandwidth as

U(t, e, c, µreq, µrel, µcust, σcust) =
∞X

k=1

„
Φ(

k − µcust

σcust
+

1

2
)− Φ(

k − µcust

σcust
− 1

2
)

«
·Û(t, k, e, c, µreq, µrel). (6)

The difference in utility computed by Formula 6 between two amounts
of bandwidth yields the valuation of having that additional band-
width.

For computational purposes, both infinite summations in this model
are approximated by summing over the range of ±3 standard devi-
ations from the mean for each of the bivariate Poisson distributions.
Accordingly, the standard deviation is computed as ±

√
µ1 + µ2.

4. SIMULATION
4.1 Implementation
To evaluate our model, we implemented a simulation that runs with
steady-state customer behavior. The model is geographically con-
sistent; the number of customers in the entire system is fixed, and
customers may move from their current cell to any adjacent cell.
The customers can either stay in the same cell or move into one
of the six neighboring cells, each choice has its own probability.
When a customer is at the edge of the system and moves off the
board, it will wrap around to the other side in a toroidal fashion.
We also ran our simulation with customers staying in place rather
than wrapping around the edge, but it did not make a significant
difference in any of the results. Customers may move while con-
nections are in session.

The discrete-time Markov chain used to model customer connec-
tions has three states: idle, singe-channel connection (such as voice
and low bandwidth data calls), and multi-channel connection (large
downloads, intensive data calls). When making a connection, if
bandwidth resources are insufficient, the connection is considered
blocked and the customer remains in the idle state. Single-channel
and multi-channel connections each use a primary channel, but
multi-channel connections may also use some number of supple-
mental channels. These supplemental channels increase the band-
width of each multi-channel connection, bettering the customers’
experiences. However, supplemental channels are allocated only
after all the single-channels and primary channels.

The simulation iterates over both the movement and connection
Markov chains a specified number of times between each round
of bandwidth trading. Each service provider calculates its band-
width valuations from the measurements of movement, connection
origination, and connection release rates, collected between each
round of trading. The greater the number of iterations, the more
closely the behavior approximates the exponential distribution of
connections and movements.

It is also a simultaneous strength and weakness of our model that it
is based on the assumption that the next period between bandwidth
trading is statistically the same as the previous one. This effect
is useful in that it can rapidly adapt to a situation, but does not
work as well if the system’s rates change too fast between markets.

One of the necessary precautions of implementing this model in a
real system would be to make sure that the markets are frequent
enough such that the system’s connection and movement rates are
not drastically changing between every round of bandwidth trading.

We ran each simulation for 50 market periods, which was enough
for the results to converge. Between otherwise identical runs, the
randomness caused only about a 1% difference. For measuring the
simulation, we gathered the global average number of simultane-
ous successful connections, average number of BCRs per provider,
each provider’s utility values, each provider’s leases, and average
data rate (accumulated per cell as the number of the provider’s un-
used channels divided by the number of multi-channel connections,
or 0 if no multi-channel connections were in progress).

4.2 Results
To evaluate our model, we ran the simulation with different con-
figurations of number of providers, number of customers, and cell
layouts, as detailed in Table 4.2. For each of the 8 simulation en-
vironments, we ran 32 tests varying the connection rates, customer
movement rates, and the number of customer iterations between
each market. These customer behavior parameters are detailed in
Table 2. We ran each of these 256 configurations with both the
bandwidth trading market enabled and disabled. The customer dis-
satisfaction threshold was set to b = 3 and σ = 1. Because the
values of b and σ define the valuation curve with low numbers of
customers, they would need to be calibrated to customer expecta-
tions for a real implementation.

The primary effects of our simulation runs are shown in Figure 2.
Each point represents the results of one provider in a particular sim-
ulation run. All of the dimensions in this graph are scaled by the
inverse of the average number of customers per provider. This scal-
ing makes the values comparable between large and small scale
simulations. The vertical axis is the increase in the provider’s util-
ity with the horizontal plane representing 0. The utility is com-
puted by adding any profit from leasing bandwidth to the provider’s
valuation of its bandwidth, minus the provider’s valuation of the
bandwidth it owns if the market were not used. While utility may
technically be negative, a rational provider would not participate
in trading if it expected to lose money. Each provider’s utility was
non-negative in all of our trials.

The axis labeled “bandwidth difference/customer” represents the
difference between the provider’s average bandwidth in a given
cell, and the average bandwidth of all the other providers in the sys-
tem, scaled by the number of the provider’s customers. A positive
bandwidth difference means the provider has more bandwidth per
customer than average. The axis labeled “BCR reduction/customer”
is an output of the system, and represents the average decrease in
the number of BCRs due to enabling the market. Both horizontal
axes have a dark line to indicate the value of 0. Each data point is
represented as a diamond shape. Lines are drawn from each data
point to the corresponding position on the horizontal plane. The
shadow at the base of each line is for clarity, with darker shades
indicating more points in the same area. From the diamond shape,
a line protrudes representing the amount of bandwidth leased per
customer. If the line is to the right, it means the provider leased
bandwidth from other providers, whereas the left means it leased
bandwidth to other providers. The length of the line from the edge
of the diamond shape indicates the amount of bandwidth leased per
customer.



Table 1: Simulation Environments and Results
Environment Number 1 2 3 4 5 6 7 8
Number of Providers 3 3 6 6 6 6 6 9

Cell Grid Size 4x6 2x1 2x1 4x6 4x6 4x6 4x6 10x10
Number of Customers 1400 120 225 2350 2350 2350 2350 16820

Average 1.11 0.62 0.60 0.56 0.55 0.69 0.45 0.50
Bandwidth/Customer
Standard Deviation 0.81 0.30 0.30 0.36 0.31 0.50 0.13 0.30

Provider-Cell’s
Bandwidth/Customer
Standard Deviation 0.80 1.67 1.11 0.77 0.77 0.77 0.77 0.83

Provider’s Customers/Cell
Reduction of Blocked 43.6% 3.9% 2.7% 16.5% 18.9% 34.6% -0.2% 9.7%

Channel Requests
Change in Utility 8.5 0.007 0.5 6.5 5.9 14.0 0.5 4.2

Per Customer

Table 2: Simulation Customer Behavior
Probability of Customer Moving .1, .2, .5
Probability of Placing Single-Channel Connection .1, .2, .5
Probability of Placing Multi-Channel Connection 0, .1, .4
Probability of Releasing a Connection .2, .5, .9
Iterations Between Markets 1, 10, 20, 30

From Figure 2, it is clear that the increase in utility gained from the
market correlates with the reduction of BCRs (towards the upper
right of the graph). The correlation of 0.70 between utility and BCR
reduction confirms the effectiveness of the primary market function
to reallocate bandwidth to reduce the number of BCRs. Another
notable effect from Figure 2 is that providers with the largest de-
viation from the average bandwidth per customer had the largest
utility gains from the market. This effect can be seen by the points
being higher on both ends of the bandwidth difference axis. The
highest utility gains were those by providers with the least band-
width per customer relative to other providers, and is supported by
a 0.78 correlation between the utility change per customer and the
amount of bandwidth leased per customer (ignoring lease direc-
tion). These highest utility gains were made by leasing bandwidth
to reduce the number of BCRs, as depicted by the other horizontal
axis. The high utility gain of the providers on the positive side of
the bandwidth difference is primarily due to the profit made by leas-
ing excess bandwidth to other providers, incurring small increases
in BCRs.

Across all simulation environments, the market reduced the average
number of BCRs by 22%. The market also reduced the variance
in BCRs by 19%, which reduced the probability that a customer
would incur multiple BCRs. However, we note that the tests were
designed to test a range of behaviors of the model rather than re-
semble a specific real-world distribution of test cases. The range
of reduction in BCRs from these 8 simulation environments had
a wide range, from 0.2% to 74%. From Table 1, the only envi-
ronments that did not see a noticeable reduction in BCRs were en-
vironments 2, 3, and 7. Environment 7 could not have improved
much, because it had the lowest standard deviation of provider-cell
bandwidth per customer, meaning that all providers having very
similar amounts of bandwidth per customer. Environments 2 and
3 were very small, allowing fewer fluctuations in the system. En-
vironments 1 and 6 had the greatest reduction in BCRs due to the
opposite conditions: many resources and a large difference between

large and small providers. Environment 8, with 16820 customers
over 100 cells, had results that were in line with the rest of the
simulations, showing that our model scales to real-world sizes.

Some providers incurred a small number of additional BCRs when
the market was added (negative BCR reduction/customer). This
increase is primarily caused by the provider leasing bandwidth to
another provider that has a higher valuation. This higher valuation
stems from having few customers to absorb BCRs, since our valu-
ation model attempts to prevent customers from receiving multiple
BCRs channel to prevent critical incidents. It is also notable that
the number of iterations between markets had no effect, in that its
correlation to all outputs was trivially close to 0. This supports the
case for our model being resistant to random perturbations of user
behavior with a stationary user model, as well as supports our case
for our model having flexibility in the inter-market time as long
as the customer behavior can be assumed to be reasonably consis-
tent in that interval. We note that the perturbations from customer
movement had little effect as well, despite though the providers’
tracking. This is largely due to the unbiased customer movement
distribution. The only correlation with customer movement that
was not trivially close to 0 was the average data rate, with a cor-
relation of -0.14 without the market and -.16 with the market. A
negative correlation between these values indicates that when cus-
tomers move around rapidly, our model slightly reduces the average
data transfer rate, though our measurement of customer dissatisfac-
tion thresholds does not take this into account.

Figure 3 shows three time sequences of a single provider’s available
bandwidth after the market. To view the dynamics of a market for
this figure, we changed the simulator to only record the rates of the
previous iteration, instead of continually accumulating customer
rates. Without this tweak the bandwidth trading converges. The
convergence is more useful to measure the steady state, but causes
the bandwidth line on the graphs to slowly converge to an equilib-
rium. In region A of Figure 3, bandwidth is somewhat scarce, influ-
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Figure 2: Provider utility (vertical axis) plotted against several simulation features, depicting the model’s primary effects.

encing the provider to only lease it when necessary. This environ-
ment exhibits tight tracking, where the available bandwidth closely
mimics the customers. Because the available bandwidth is reactive
to the number of customers and the number of channel requests,
this delay emphasizes the necessity of a sufficiently small time be-
tween market to ensure that traffic is reasonably steady. Region
B shows the case where the provider has insufficient bandwidth,
and the bandwidth is very scarce and expensive. In this case, the
provider leases only a small (yet still insufficient) amount of band-
width during the peak demands, representing a worst-case scenario
when a cell is overloaded. A more typical example is region C,
where the provider generally maintains sufficient bandwidth, and
leases out bandwidth accordingly. Region C is more typical of
real-world situations because the cell’s bandwidth is reasonably
close to its utilization. The case where bandwidth is plentiful is not
shown; when bandwidth is plentiful, little trading commences. The
little trading leaves flat lines for available bandwidth above the cur-
rent number of channels requested, and occasionally resembles the
characteristics of region C during high volume intervals of channel
requests.

Even though our model does not account for supplemental data
channel requests in its valuation, Figure 4 indicates that the rate is
generally not greatly affected (the data points are close to the line
y = x). If a provider deems that a lack of supplemental data chan-
nels will impose a critical negative incident for customers, it may
be accounted for and calibrated in the customer threshold. How-
ever, if the provider deems it to be less critical to customers, Fig-
ure 4 shows that omitting supplemental data channels to simplify
the customer model is not problematic.

5. CONCLUSIONS
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Figure 3: Three samples (regions following A, B, C) of an in-
dividual provider’s available bandwidth after trading, plotted
along with the number of customers and channel requests.

In general, our simulation results confirm that using a bandwidth
trading market with our customer valuation model is viable for
providers. This is not surprising, as markets are often very efficient
at allocating resources according to valuations, but our model has
the added benefit of more accurate market prices and fewer timing-
related issues than spot markets. Our results show that our model
is scalable and adaptable to many different situations.

We believe our work is aligned with the future goals of the FCC
and builds off other technologies. We describe a model based on
customer thresholds of critical incidences, which accommodates
customer connection rates and movements. We implemented a sim-
ulation of this model and evaluate it on a variety of inputs.
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Figure 4: Average data rate for each simulation run with and
without the market enabled, measured by the number of the
provider’s unused channels when at least one multi-channel
connection is active divided by the total number of multi-
channel connections.

While a case-study would be required to determine the benefits in a
particular real-world situation, we feel the simulation results are in-
dicative that our approach would be beneficial in practice. Though
the bandwidth leasing we require for our model is not yet permitted
by the FCC, we feel that it fits with the spirit of the FCC regula-
tions in maintaining accountability, and provides the added benefit
of maintaining competitive markets.
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