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Abstract

When agents can significantly increase other agents’ utility
at a moderate cost, the socially optimal outcome is for all
agents to repeatedly provide favors to each other whenever
they can. However, when agents cannot support or enforce a
market system, this forms a situation similar to the repeated
prisoner’s dilemma because each agent can unilaterally im-
prove its own utility by refusing to help others. We present
an adaptive tit-for-tat strategy that provides a mutually bene-
ficial equilibrium in the general cases when agents may have
differing private discount factors and when favor costs and
benefits are stochastic and asymmetric. This strategy allows
agents to treat previously unencountered agents with caution,
communicate about the trustworthiness of other agents, and
evaluate past communication for deception. We discuss the
details of the strategy, analytic and simulation results, and the
impact of various parameterizations. We analyze one form of
communication in detail and find that it causes agents to be
more protective of utility.

Introduction
People and organizations routinely perform favors in a vari-
ety of settings built on norms, empathy, and trust. However,
a self-interested agent acting on behalf of a person, orga-
nization, or itself, only has whatever intrinsic empathy and
trust towards others with which it was designed. In many sit-
uations, the socially optimal outcome is achieved via agents
exchanging resources and services.

While market-based resource allocation is often an ef-
fective tool for social optimization (Wellman 1996; Golle,
Leyton-Brown, & Mironov 2001), market transactions may
not be effective with self-interested agents without common
currency, sufficient liquidity, means transferring resources,
or effective methods to enforce a fiat currency. In such cases,
agents can reciprocally perform favors instead of using mar-
kets to improve social welfare, albeit with generally less ef-
ficient outcomes. However, agents that can trust one another
to reciprocate favors to form a gift economy will have a bet-
ter ability to smooth out inefficient allocations over time.

Many environments lend themselves to such favor-based
interactions. One widely studied example is peer-to-peer
file sharing as a decentralized means of distributing data
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and software (Kamvar, Schlosser, & Garcia-Molina 2003;
Banerjee et al. 2005). Complex tasks in multi-robot sys-
tems often require coordination to increase utility (Gerkey
& Matarić 2002). Favor-based mechanisms are particularly
useful in situations where robots are self-interested but do
not have resources to enforce trade. In business-to-business
settings, agents involved in procurement can decide whether
to put forth extra effort to deliver goods or services exceed-
ing the contract when the customer is in need to foster the
relationship for reciprocatively beneficial behavior. Personal
assistant agents may engage in similar interactions, such
as transferring reservations that offer more utility to a re-
cipient who has a history of positive reciprocations. Gift
economies may also be used to augment market-based trans-
actions to circumvent market friction, such as a burdensome
taxation system, or to increase the risk in switching to an-
other provider with an unknown reputation.

While the question of trust between agents has received
considerable attention (Jøsang, Ismail, & Boyd 2007), we
approach trust from a new perspective. In this paper, our
main contributions are that we view trust as a matter of pa-
tience, and model trust from a strategic perspective. If an
agent is patient, it will uphold its end of bargains and do
favors for other agents because it knows the favor will be
repaid many times over in the future if the other agents are
also patient. To model an agent’s patience, we use discount
factors. Discount factors are a widely used method of reduc-
ing the perceived value of resources and events in the future
to less than they are worth in the present. For example, an
agent might prefer receiving $100 today to receiving $300
in 6 months. This mechanism accounts for the opportunity
cost of not utilizing resources until the later point in time.
Discounting can also be used to model uncertainty and reli-
ability when making decisions.

Although discount factors are widely used in economics,
finance, behavioral sciences, game theory, and artificial in-
telligence, each agent or firm is typically assumed to have a
publicly known discount factor. Assuming that discount fac-
tors are public is reasonable for certain areas such as finance,
but even professional economists’ opinions of an appropri-
ate discount factor can have a wide distribution (Weitzman
2001). Discount factors are influenced by the preferences
of the person, agent, or organization. Though discount fac-
tors may be used strategically by opponents, many mod-



els require publicly known discount factors. Our model is
unique in that it allows agents to maintain private discount
factors and measure others’ discount factors. We employ the
commonly used exponential discounting net present value
(NPV), although other decreasing discount models may be
substituted. Our model also exhibits individual rationality
(expected positive utility by participating in the game) and
in most cases attracts agents to approximate incentive com-
patibility (optimal strategy is to perform honestly).

In this paper, we build a simple but applicable favor-based
interaction model in which agents attempt to maximize their
own utility based on their discount factor and what they ex-
pect to gain in the future. In our model, agents interact via
a stochastic process, and can only choose whether to reduce
their own utility in order to increase that of another. We
begin by presenting related work, followed by our stochas-
tic interaction model, and then present our adaptive repu-
tation method, which we then use to construct our primary
result: a reciprocity general strategy that works in stochas-
tic environments. We investigate how agent communication
impacts the model and evaluate the strategies via simulation.
We find analytically and experimentally that agents with dis-
count factors that allow them to retaliate the most effectively
in a tit-for-tat style equilibrium achieve the highest utility.
Finally, we draw some conclusions from our analysis and
simulations about how communication affects agents’ be-
havior in our model.

Related Work
Our work is similar to Sen’s work (Saha, Sen, & Dutta 2003;
Sen 2002) in that we build a reciprocity model on future
expectations, but we allow for the discovery of private dis-
count factors, observe possible ranges of responses rather
than point values, and do not use randomization to commu-
nicate signals. Our model also resembles that of Buragohain
et al. (2003) in the way we are using incentives to build trust
in an environment with favors, but the primary differences
are that their model has continuous interaction and does not
deal with discount factors.

Many others have proposed various methods of quantify-
ing reputation and trust. Sierra and Debenham (2005) de-
scribe an information theoretic model of trust where more
information yields less uncertainty in decision making. Be-
cause they use ordinal preferences instead of utility, their
model works well only if all items being negotiated about
are of sufficient and comparable worth. Teacy et al. (2006)
use a beta distributions to model positive and negative inter-
actions, but do not take into account the magnitude of the
interaction nor strategic behavior from agents. Along sim-
ilar lines of trust measurement, Yu and Singh (2002) use
Dempster-Shafer theory, which represents belief and plau-
sibility in probabilistic terms, to model trust and reputation.
However, like the work of Teacy et al. and Sierra and Deben-
ham, this model does not deal with strategic behavior nor
interactions of different ranges of utility, potentially leaving
agents’ utility unprotected against a strategic agent.

Ramchurn et al. (2006) develop a finite-horizon negoti-
ation mechanism based on repeated games. Because the
agents are negotiating about the near future, their differing

discount factors are implicitly accounted for in the negotia-
tions, resembling the effects of our model. However, their
model does not deal with agents that break promises, and
thus needs exogenous enforcement.

Azoulay-Schwartz and Kraus (2004) present a favor reci-
procity model of information exchange and use a punishing
trigger strategy with forgivement. While their method of in-
teraction and mechanisms resemble ours, they assume that
discount factors are public and their punishment mechanism
does not account for the effect on the opposing agent in re-
lation to the cost of the punishment.

While explicitly dealing with the desiderata of incentive
compatibility and individual rationality are generally con-
sidered important in game theory and auction literature,
dealing with strategic behavior is more rare in the trust and
reputation literature. Jurca and Faltings (2007) develop an
exchange model where the client can sanction the provider if
refund not given for a bad interaction. Their model achieves
similar goals to ours, except that their model is built on a
more complex refund-based interaction rather than simple
reciprocity, and their model assumes discount factors are
publicly known. While our model does not exhibit perfect
incentive compatibility, we are able to leverage approximate
incentive compatibility in equilibrium as an attractor to gain
accuracy in modeling private discount factors.

Favor model
In our favor model, each agent a ∈ A encounters other
agents in pair-wise interactions with two roles: offering a
favor and asking a favor. Each round, agents are paired with
other agent in both roles. The probability that agent a1 en-
counters agent a2 in the round as offer and ask roles respec-
tively is ra1→a2 . Similarly, the probability that a1 encoun-
ters a2 as ask and offer roles respectively is ra2→a1 .

When agents encounter one another, they play the game,
Γ, selected from a set of possible games, G, as follows. The
agent in the ask role knows its willingness-to-pay for a par-
ticular favor, w, and asks the other agent for the favor. While
the asking agent could choose not to ask for the favor, the
strategy of asking a favor always dominates not asking the
favor because asking incurs no cost, reveals nothing to the
opponent, and the asker will either receive a favor or gain
information about the other agent. When the asking agent
asks for the favor, the cost of the offering agent to perform
the favor, c, is revealed to both agents. The agent in the of-
fering role then decides whether to provide the favor, P , or
to reject the request, R.

This repeated game has the obvious Nash equilibria of
offering agents always playing R. However, more equilibria
and interesting behaviors emerge when reputation is taken
into account. An agent has no direct control over gains of its
own utility, and is thus subject to the actions of other agents.

The values of c and w are drawn from the non-negative
distributions of the random variables C and W respectively.
While the distributions are public information, our model
may be extended to have agents learn the distributions. Each
agent may have a unique distribution, but we assume they all
share the same distribution for clarity.



Each agent’s type is comprised of its discount factor, pre-
vious observations of interactions with other agents, and in-
formation acquired from communication with other agents.
As these attributes of an agent’s type are private, agents must
analyze other agent’s actions and strategize about informa-
tion revelation in order to maximize utility.

In order to deal with agents’ changing preferences over
time, we discount agents’ histories by using a replacement
process for the agents. When a replacement occurs, an agent
is effectively removed and replaced with a new agent; its
discount factor is redrawn from the distribution of discount
factors. The agent’s observations and information of other
agents may be cleared when it is replaced. Agent replace-
ments have been shown to be an effective tool for modeling
how agents change over time (Mailath & Samuelson 2006).
This replacement process forces agents to focus on recent
observations more than old observations, and allows agents
to change over time. We set agent a’s replacement rate at
λa, and use a Bernoulli process to decide when the agent is
replaced. The replacements can be justified by a change in
the market, agent’s ownership, information, or other factors
in a dynamic environment. For the model to be meaning-
ful to real-world scenarios, the replacement rate should be
sufficiently low for reputation to be significant.

Strategies With Known Discount Factors
As an agent’s discount factor increases, its willingness to
give favors to other agents in return for greater reward later
increases. An agent with a high discount factor therefore
would desire a mechanism that rewards its patience and pre-
vents other agents with lower discount factors from taking
advantage of it. Under such a mechanism, agents will recip-
rocate favors according to discount factors of their own and
of the opposite player.

Suppose agents a1 and a2 are exchanging favors, where
a1 is offering all favors to a2 that cost a1 less than a1’s cur-
rent maximal favor offering, ca1→a2 . We can think of the
value ca1→a2 as the minimum amount that a1 trusts a2 to
repay back in favors. Similarly, a2 is offering a1 all favors
that cost a2 less than ca2→a1 . As the only positive payoff
to a1 is controlled by a2, and a1 incurs cost for providing
favors to a2, a1 has a direct incentive to reduce its costs by
refusing to provide favors. Given that the cost of providing
favors is known and comparable, a1 would choose which
favors to perform and control its cost by adjusting ca1→a2 .
When a1 is playing in an offer role in game Γ, we can thus
write a1’s expected total future utility of interacting with a2

discounted by γa1 for each time step, t, given the cost of the
current favor cΓ as

Ua1 =
∞∑

t=1

γt
a1

ra2→a1PE(W |C < ca2→a1)

− cΓ −
∞∑

t=1

γt
a1

ra1→a2PE(C|C < ca1→a2). (1)

We define the shorthand notation PE(Y |X) ≡ P (X) ·
E(Y |X) with P (X) being the probability of event X oc-
curring and E(Y |X) is the expected value of Y given that

X occurred. Equation 1 may be easily extended to a total
utility by a summation over all agents.

One primary criteria of an effective economic mechanism
is individual rationality, that is, an agent will expect to gain
utility by participating. By applying this principle to a given
pair of agents, we can find the maximum c for which each
agent would be willing to provide a favor to the other while
keeping the utility non-negative. We can find these values by
simply setting Ua1 = Ua2 = 0, setting cΓ to the correspond-
ing c that the agent pays out in each equation, and solving to
find ca1→a2 and ca2→a1 .1

Using the method we described above to find the c values
for agents does have the problem that each agent can directly
increase its utility by reducing its corresponding c. Our favor
model is closely related to the repeated prisoner’s dilemma;
the Pareto efficient outcome, ∀a, a′ ∈ A : ca→a′ = ∞,
is not a Nash equilibrium because agents have incentive to
defect from this strategy. One key feature of the repeated
prisoner’s dilemma is that the outcome can be Pareto effi-
cient if agents can credibly punish others for defecting. The
grim trigger strategy may easily be achieved by permanently
setting ca→a′ = 0 when agent a′ does not offer a favor. If
significantly many agents use grim trigger, then agents are
reluctant to ever not offer a favor, bringing about the Pareto
efficient outcome. However, the grim trigger strategy is inef-
fective unless sufficiently many agents take on this strategy,
and can be extremely pessimistic when agents and circum-
stances may change.

Tit-for-tat strategies are similar to grim trigger, except that
the punishment is not as long lived and agents can eventu-
ally forgive others. Generally, tit-for-tat entails one agent
punishing a defecting agent in a manner or magnitude sim-
ilar to that of which the defector deprived the first agent of
utility. If a2 brings a1’s utility down, a1 would like to bring
a2’s utility down the same amount. Agent a2 can decrease
its costs by reducing ca2→a1 . The rate of change of a2’s
utility, Ua2 , with respect to a2’s rate of change of ca2→a1

can be written as the partial derivative ∂Ua2
∂ca2→a1

. Because an
agent’s utility increases when its costs are reduced, this par-
tial derivative is always negative. By changing ca1→a2 , a1

affects a2’s utility by the rate of ∂Ua2
∂ca1→a2

.
In steady-state, agents will maintain constant values of

c. When an agent makes a small change to c, its opponent
may be able to effectively retaliate the same amount, but
only if its discount factor is appropriate. We can express the
equilibrium where agents’ retaliations to small changes in c
are equal as

∂Ua2

∂ca1→a2

= − ∂Ua2

∂ca2→a1

. (2)

The right hand side of the equation is negative because de-
creasing one’s own c increases one’s own utility. Further,
there is usually a pair of discount factors and c values that
satisfy this equality, except for extremely different values of
the rates of encounter, r, or the maximum favor willing to

1An agent a could also have some threshold, ka > 0, which it
must receive in expected utility gain in order for it to participate, in
which case Ua = ka would be solved instead.



be offered, c. Theorem 1 in the Appendix shows that there
is always a discount factor that satisfies Equation 2.

When Equation 2 holds, the two agents can equally retali-
ate and so neither has an incentive to deviate from its current
value of c. Because this, we expect the most effective coop-
eration would occur with agents that have the most appro-
priate discount factor for the given parameterization, that is,
discount factors that satisfy Equation 2 using the most prob-
able values of c because they have the most leverage to affect
their opponents. We will revisit this notion when discussing
the simulation results.

Modeling Reputation
We denote other agents’ reputations from the vantage of
agent a1 as a set including a1’s direct observations com-
bined with the information communicated to a1 by other
agents as Ia1 . An observation, i ∈ Ia1 , consists of the tuple
(oi, o

′
i, ti, γ

∗
i ), where oi is the agent that made the obser-

vation, o′i is the agent the observation is made about, ti is
the time of the observation, and γ∗i is the observation range.
We define an observation range as a tuple of the upper and
lower bound of the discount factor, γi, given an observation
of the action the agent took in a given game. We assume that
agents’ observations are accurate.

New observations can increase the precision and accu-
racy of a reputation estimate or alternatively invalidate pre-
vious observations if they are conflicting. Conflicting ob-
servations typically occur because an agent has undergone
replacement, but may also occur due to changes in agents’
information. Given a set of observations, I, and a new ob-
servation, i′, we define the function X , which returns the set
of all observations in I which conflict with i′, as

X (I, i′) = {i ∈ I : oi = oi′ , o
′
i = o′i′ , γ

∗
i ∩ γ∗i′ = ∅}. (3)

When agent a1 makes a new direct observation of a2, i′,
we denote the resulting relevant history of observations as
Ia1 ⊕ i′. We define this operation of accommodating a new
observation as

Ia1 ⊕ i′ =

{
Ia1 ∪ {i′} iff X (Ia1 , i

′) = ∅,
{i ∈ Ia1 : ti′ ≥ maxj∈X (Ia1 ,i′) tj}.

(4)

If agents’ strategies are consistent and prevent conflict-
ing observations, we can denote the expected number of
direct observations of a2 between replacements by a1 as
E(|{i ∈ Ia1 : oi = a2}|). This value is maximized just
prior to replacement and 0 after the replacement. By using
the equality

∑∞
t=0(1−λa2)

t = 1
λa2

, the expression becomes

E(|{i ∈ Ia1 : oi = a2}|) =
ra2→a1

2λa2

. (5)

As the replacement rate drops to 0 and the observation his-
tory length becomes infinite, the only conflicting observa-
tions that would occur would be due to agent strategies such
as misinformation or collusion. All else being equal, lower
replacement rates would not decrease the expected number
of relevant observations, that is, observations that occur at
or after the last conflicting observation. Given an arbitrary

additional observation, i′, some replacement rate x, and a
small change in replacement rate, ε, this can be expressed as

E(|{i ∈ Ia1 : oi = a2} ⊕ i′| |λa2 = x) ≥
E(|{i ∈ Ia1 : oi = a2} ⊕ i′| |λa2 = x + ε). (6)

With a longer relevant observation history, a conflicting ob-
servation probabilistically makes more of the observation
history irrelevant. If agents bias reputation toward a poor
reputation when few or no relevant observations are avail-
able, then this mechanism translates into more difficulty
gaining reputation than losing it. In such a system, agents
would have increased value for maintaining a positive repu-
tation because of this bias.

Agents’ Utilities Under Incomplete Information
To denote the results from simultaneously solving the afore-
mentioned constraints of individual rationality for the max-
imum allowable c, Ua1 = Ua2 = 0, we introduce the func-
tion γ∗offer : G × {P,R} → ([0, 1) × [0, 1)). This function
returns an observation of the discount factor for the offering
agent based on the action performed by the offering agent
and the parameters on the game, Γ ∈ G, where G is the set of
all possible games that the agent could play. Each game con-
sists of the favor cost cΓ and the agents involved. The range
returned for γoffer will be one of [γ, 1) or [0, γ], depending on
whether the offering agent played P or R respectively. We
will refer to this range as γ∗i for the outcome of game Γi.
Further, we introduce the function c∗ : [0, 1) × [0, 1) → R,
which takes in discount factors (or estimations thereof) of
two agents, γa1 and γa2 , and returns the maximum value of
a favor the first agent would offer to a2, ca1→a2 , for the pa-
rameters given. We use the shorthand notation c∗a1→a2

to
indicate c∗(E(γ|{i ∈ I : o′i = a1, oi = a2}, E(γ|{i ∈ I :
o′i = a2, oi = a1})).

Both functions γ∗offer and c∗ are used as inputs to Equa-
tion 1 for the corresponding unknown values. A system of
equations of total utility may be used to include all agents
with a separate equation for each agent within the connected
components of the communication graph. These connected
components include the agents of interest, all other agents
that those agents trust sufficiently to accept communicated
observations, all agents trusted by those agents to accept an
observation, etc., so all agents may be included. These equa-
tions are evaluated from an individual agent’s perspective, so
the values are accurate only to the accuracy of the agent’s in-
formation. While these systems of equations can be difficult
or impossible to solve in closed form, numerical methods
such as multivariate secant or bisection are effective.

An agent’s utility in the current game for a given action
is the sum of the value obtained by the action plus the ex-
pected future value, V , of all future games given the agent’s
reputation after having performed the action. In order to
find this future valuation of an agent’s reputation, an agent
a1 must evaluate other agents’ discount factors from the ob-
servations, Ia1 , it has made. When a1 is playing in the offer
role, given that a2 has chosen to ask the favor by playing P ,
a1’s expected discounted utility can be expressed relative to
its discount factor for the current game, Γ, as
Ua1(s) = Va1(Ia1⊕(a1, a2, t, γ

∗
offer(Γ, s)))−δs,P ·cΓ, (7)



where the result of function V yields the future value of a1’s
reputation given that a2 will observe a1 playing s ∈ {P,R}
in a game with the value of cΓ. If a1 plays P , then its utility
will be reduced by cΓ.2

Each observation i loses potency as elapsed time increases
since the observation was made, with loss rate based on the
replacement rate of the agent observed. The uniform dis-
tribution satisfies the principal of maximum entropy given
the maximum and minimum value of an observation. We
can find the value of the probability density function (PDF)
of an agent’s discount factor γ, given a single observation i
and current time T , discounted by the replacement rate as

fi(T, γ) =

{
1−(1−λT−ti )(1−(sup γ∗i −inf γ∗i ))

sup γ∗i −inf γ∗i
if γ ∈ γ∗i ,

1− λT−ti if γ /∈ γ∗i .
(8)

We can then use Bayesian inference to combine the PDFs
of the relevant observations to find what a given agent
will expect another agent to believe of its discount factor,
E(γ|T, I), as

E(γ|T, I) =
∫ 1

0

x

∏
i∈I fi(T, x)∫ 1

0

∏
i∈I fi(T, y)dy

dx. (9)

To find the total future utility for a given reputation, an
agent needs to determine its expected gain from encounters
with every agent. By taking the expected discount factor via
Equation 9 for each situation, combining relevant observa-
tions, finding the corresponding maximum favor value c∗,
and using the results in the manner of Equation 1, we find

Va1(I) =
γa1

1− γa1

∑
a∈A

(
ra→a1PE(W |C < c∗a→a1

)

− ra1→aPE(C|C < c∗a1→a)
)
.

(10)

In addition to using observation and communication to
evaluate others’ discount factors, agents can also strategize
how to influence others’ perception of their own discount
factor. Agents would prefer to have other agents overesti-
mate their own discount factor, as then an agent would be
able to take advantage of other agents that are willing to
give up short-term gains for larger long-term gains. Simi-
larly, agents do not want other agents to underestimate their
own discount factor, because then they will be missing gains
for which they would be willing to reciprocate favors.

Despite the incentive to convince others of an artificially
high reputation, our model is approximately incentive com-
patible in the steady state because the cost to convince an-
other agent of a better reputation is more than the expected
future gain. Incentive compatibility is important because
without it, agents cannot accurately deduce discount factors
from other agents that strategically give larger favors than
they should. While our model does not ensure incentive
compatibility, it generally ensures that the region of incen-
tive compatible state space is an attractor. When agents are
not in a region of the state space that is incentive compatible,
agents are incentivized to correct others’ beliefs.

2The Kronecker delta, δi,j , yields 1 if i = j, 0 otherwise.

The three exceptions where agents are not approximately
incentive compatible are as follows. First, while agents pre-
fer opponents to overestimate their discount factors, spend-
ing utility to inflate reputation costs more than an agent will
receive from the inflated reputation. However, if an agent al-
ready has a stronger reputation than its discount factor, then
the agent is incentivized to use the reputation and play R for
games below c while obtaining favors from the other agent.
Second, if an agent’s reputation is much lower than its actual
discount factor, then the agent may not always offer small fa-
vors for small values of c because they may not sufficiently
increase reputation to be worthwhile. While not incentive
compatible, these two cases correct other agents’ beliefs.

The third exception to incentive compatibility is if agents’
discount factors are high and the value received from a favor
is disproportionately large relative to the cost of offering a
favor. In this case, an agent may know that its opponent’s
high discount factor will prevent a decrease in reputation
from dramatically decreasing utility because its opponent’s
expectations of the future far outweighing the utility lost. In
these cases, agents with the highest discount factors may not
necessarily end up with the highest utility.

Communicating Reputation Information
When communicating information about other agents’ repu-
tations, agents have a variety of ways to divulge information.
An agent could send another agent its entire list of observa-
tions for a given agent, or alternatively just its estimate of the
other agent’s discount factor. While supplying more detailed
information can be more helpful to the recipient, more de-
grees of freedom of this information make it more complex
for the recipient to evaluate whether the information is accu-
rate and truthful, particularly if other agents are colluding.
Further, because agents can gain utility when others to over-
estimate their discount factors, a self-interested agent may
be reluctant to divulge extra information that might reduce
another agent’s belief of its discount factor.

Our communication model offers similar effects to that
of the model proposed by Procaccia et al. (2007), although
their method uses randomization to communicate reputation
instead of ranges of discount factors. Agents maintain obser-
vations and communications which are used in aggregation
to evaluate each other and give future recommendations.

We focus on simple yet plausible forms of communication
of the following forms. Suppose agent a1 asks a3 a question
about the trustworthiness of a2 to reciprocate favors in the
future. Agent a3 can answer yes, no, or refuse to answer.
Similarly, a1 can choose to use or ignore a3’s advice and
may solicit advice from other agents.

Agent a1 could ask of a3 whether a3 itself would provide
a favor to a2 for the current game, and whether a3 would rec-
ommend that a1 provide a favor to a2. These two questions
can yield different answers, because a1’s and a3’s discount
factors and reputations may be different. For the former
question, a3 obviously has more information about itself,
and can provide a more accurate answer in that regard, but
a1 might not have much information about a3. However, if
a1 does not have much information about a3, then a1 should
not ask a3 because a1 cannot effectively evaluate a3’s an-



swer. For the latter question, a3 has less information about
a1, and could be punished for giving a bad recommendation
only for having inaccurate information about a1.

Because a1 knows what information it has about a3 bet-
ter than a1 knows what information a3 has on a1, asking
the question of whether a3 would provide a favor to a2 will
provide a1 with the most reliable information. In choosing
this question, a1 is incentivized to ask advice from agents
it knows the most about, but may also choose to ask advice
from other agents for the purpose of learning about them.
Agent a1 is further incentivized to ask advice from agents
with similar discount factors, because their answers would
be similar. However, if a3’s discount factor is different than
a1’s and a1 has some knowledge about a3’s discount factor,
then a1 can still use a3’s advice to learn more about a2.

When a1 asks a3 whether a3 would offer a2 the favor
in the current game, a1 would like to make an observation
about a3 in addition to the observation of a2. Agent a1 can
combine a3’s advice with a2’s action and utilize future ob-
servations of a2 to more accurately reevaluate the observa-
tion made about a3’s answer. If a3 refuses to answer when
asked, a1 can assume a3 is not confident in its information
about a2, and cannot make an observation. If, on the other
hand, a3 has sufficient information, a1 will judge a3 based
on the recommendation either positively or negatively.

Now we examine the implications of how a3’s recom-
mendation will affect a1’s perception of a3. Suppose a3 an-
swered it would play P in the queried game. In this case, a1

has a P observation of a2 for this recommendation, where
a1 will compute the observation of a2 as if it were from a3’s
perspective using its belief of a3’s discount factor. Later, a1

may reevaluate this observation when deciding to offer a fa-
vor to a3 by using a1’s current knowledge of a2’s discount
factor and the parameters to the game in which a3 had given
its recommendation. Agent a1 will believe that a3’s recom-
mendation is accurate if a1 believes that a2’s discount factor
is within the bounds of a1’s observation of a3’s recommen-
dation. Similarly, if a3 recommends R to a1 and a1 later
finds out that a2 had had a low discount factor, then a3’s
reputation will be increased by the P observation in a1’s hy-
pothetical game between a2 and a3.

Suppose a3 answered it would play R with a2 and a1

finds out later that a2 had had a high discount factor. Agent
a1’s interpretation of the observation of a3’s recommenda-
tion would be that a3 has a discount factor below that re-
quired to play P with a1, making the observation an upper
bound on a3’s discount factor.

Finally, the most complex case is when a3 answers it
would play P with a2, but a1 later finds out that a2 had
had a low discount factor. If a1 finds that a2’s discount fac-
tor is low and does not return favors, then a1 can reason that
a3 gave the answer P so that a1 would increase its expected
value of a3’s discount factor. However, the answer would
indicate that a3’s discount factor is so low that it was not
concerned with a1 other than extracting a favor that it would
not have to repay. Because a3’s discount factor cannot be
measured with respect to this false information for the hy-
pothetical game, and because this false answer indicates that
a3’s discount factor is arbitrarily low, a1 would be prudent

to throw away its previous observations of a3 to reset its ex-
pected discount factor to a low value.

Note that these hypothetic observations from recommen-
dations should be observed as when the recommendation
was given, not at the time of computation. If a1 believes a2

underwent replacement since the observation of a3’s recom-
mendation, but a3 has not undergone replacement, a1 should
only use its observation history about a2 from before a2’s
replacement when computing a3’s expected discount factor.

The number of observations from communication can
scale up with the number of agents as much as |A|3 because
each agent can communicate with all others about all others.
However, in scale-free networks and other network topolo-
gies found in real-world applications, relevant communica-
tion usually scales under that bound. An agent can use var-
ious techniques to determine which agents to ask advice. A
simple technique is for an agent to ask other agents that it has
interacted with at least a minimum number of times; we use
this in our simulations. For agents with very low replace-
ment rates, more complex evaluations may be used, such as
asking agents with similar discount factors, or agents whose
answers are believed to offer the maximum amount of infor-
mation entropy about a given agent.

When an agent is reevaluating the impact of observations
from recommendations on other observations from recom-
mendations, the order of evaluation will have some impact
on the end results. For example, if a1 accepts conflicting
recommendations from a3 and a4 about a2, one of a3 and
a4 may be incorrectly punished depending on the order of
evaluation. However, by reevaluating these observations us-
ing the agent’s best knowledge at every step, this impact is
minimized. Because an agent does not know which order-
ing is best since agents need not be truthful, reasonable solu-
tions include evaluating observations in chronological order
or minimizing conflicting observations. We use the chrono-
logical ordering in our simulations.

Simulation Results
We conducted simulations of our model to assess its behav-
ior on groups of agents. For the simulations without com-
munication, we used 32 agents and ran each experiment with
100 rounds. For simulations with communication, we used
16 agents and 50 rounds (due to the more significant sim-
ulation time). Random numbers were only used to set up
the games and agents, so using the same seed with different
algorithms provided the same set of games. While we ex-
amined the behaviors with larger and randomized samples,
we used the same seed for randomizing the games across
variations to remove noise in the graphs depicted in this sec-
tion. The replacement rate was chosen uniformly to be .02
to reflect the mean expected agent life of 50 rounds.

We searched the set of parameterizations and used C ∼
U(0, 200) and various values for W because it offered a
good range of behavior with respect to the interaction be-
tween agents with full knowledge of each others’ discount
factors. We also experimented with exponential distribu-
tions of C with mean of 100. From what we have observed
with different parameterizations and distributions, the be-
haviors discussed in this section are typical.
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Figure 1: Typical simulation results of 32 agents each with
a uniform distribution of encounter rates.

We ran the experiments with two topologies for agents to
encounter each other. The first is a uniform topology, such
that each ra1→a2 was chosen from a uniformly distributed
random number from 0 to 1. The second topology is that of
a scale-free network. To construct this network, we begin
with two agents having corresponding encounter rates set to
1, and add agents individually, randomizing the new agent’s
rate of encounter with every other agent proportional to the
sum of the other agent’s rate of encounters relative to the
sum of all encounter rates. In this scale-free network, agents
commonly encounter a small set of agents and occasionally
encounter an outside agent.

To determine the effect of the distribution of agents’ dis-
count factors, we used four different distributions: uniform,
all the same, 4th root of uniform distribution, and 1 minus the
4th root of uniform distribution. The uniform distribution
allowed us to see the effects in a population of all agents,
whereas the second test made sure that the behavior did not
dramatically change when the agents all had the same dis-
count factor. The last two distributions were to bias toward
high or low discount factors respectively, but with one agent
that had an opposite discount factor.

Figure 1 shows a small but indicative subset of our re-
sults of agents’ performance given different distributions of
W using a uniform topology and uniform distribution of C.
Each point represents an agent’s final utility, and the trend
lines are depicted by the best fit quartic polynomial. Sim-
ulations with higher expected values of W obviously have
higher final utilities, but the interesting feature is how the
group of agents with discount factors that yield the highest
final utility change with respect to W .

The vertical lines near each simulation set represent the
lowest discount factor that satisfies Equation 2 with the low-
est value of c solved for the symmetric rates of encounter
of r ∈ {1, .75, .5, .25}. That means that each of these lines
represents the start of a region where two opposing agents
can equally balance off their retaliations to each other, form-
ing an even tit-for-tat strategy. Because we are setting r =
ra1→a2 = ra2→a1 in these derivations, the results are ap-
proximations to the actual interactions. The approximation
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Figure 2: Various simulation results of 16 agents for 50 time
steps each with a uniform distribution of encounter rates.

is due to agents having higher value interacting with agents
from which they are likely to frequently have the chance to
receive favors. However, it is clear that these analytical re-
sults give a decent approximation as to which discount fac-
tors will receive the highest payoffs.

Figure 2 depicts variations with W ∼ U(550, 650) for
16 agents with 50 time steps. The points labeled Uniform
Discount and the corresponding trend line are the same pa-
rameterization as in Figure 1 as a reference point. The two
4th root distributions (labeled High Discount and Low Dis-
count) show results when agents have high or low discount
factors. Groups of agents with high discount factors outper-
form the uniform distribution and groups with low discount
factors underperform the uniform distribution, but that is not
necessarily the case within a given distribution. The trends
from the distributions matched up regardless of the topology
or communication; throughout all our data, the trend is that
agents with discount factors that allow them to equally re-
taliate achieving higher payoffs, which may not necessarily
be the highest discount factors. The results from the scale-
free distribution (not depicted) were similar to that of the
uniform distribution with the only notable differences be-
ing an increased variance and mean in payoffs. The results
from using communication (not depicted) were that agents
with low discount factors tended to have 10-30% lower pay-
offs. Agents with high discount factors were less affected,
although some attained higher and lower utilities than with-
out communication.

Conclusions
Our favor model offers a mechanism for self-interested
agents to achieve cooperation when agents can only decrease
their own utility to increase others’ utility. While it does not
necessarily achieve the maximum possible social utility, it
maximizes an agent’s utilities under its own private discount
factor while ensuring that agents can expect to not lose util-
ity by helping others. Using adaptive discount factor mod-
eling allows analysis to bridge the gap between reputation
and rational strategy. This modeling also allows agents to
use discount factors in other contexts besides favors. For



example, if agents were performing market transactions or
playing other repeated games with one another, our favor
model can supplement such interaction systems.

Agents learn which agents have high discount factors and
exploit the reciprocity. Agents also have the ability to avoid
loss by refusing favors to agents with low discount factors or
inconsistent strategies. Our strategy converges to a steady-
state equilibrium and is locally optimal with respect to the
agents’ discount factors. For these reasons, our model ap-
proximately meets the criteria described by Vu et al. (2006)
for effective learning algorithms in multi-agent systems.

Strategic models of trust such as the one we present are
required in open agent communities if the strategies are to
be evolutionary stable, that is, resilient to invasion by un-
desirable strategies. While the model we present does not
encompass all possible favor scenarios, it provides a foun-
dation from which to build. Choosing which agent to ask a
favor (similar to the multi-armed bandit problem), and using
and learning joint probability distributions between C and
W are extensions we leave to future work.
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Supporting Theorem
Theorem 1. Given two agents a1 and a2 that have equal en-
counter rates, ra1→a2 = ra2→a1 , and equal maximum favor
limits, ca1→a2 = ca2→a1 , there exists a discount factors for
each agent that gives each agent the ability to change their
opponent’s utility at the same rate as their opponent.

Proof. Given the probability density function (PDF) of
C, fC(·), ∂Ua2

∂ca1→a2
= γ2

1−γ2
ra1→a2E(W )fC(ca1→a2) and

∂Ua2
∂ca2→a1

= −1 − γ2
1−γ2

ra2→a1ca2→a1 · fC(ca2→a1).

limγa2→0

{
∂Ua2

∂ca1→a2
< − ∂Ua2

∂ca2→a1

}
because all

terms become 0 except for the 1, leaving 0 < 1.
limγa2→1

{
∂Ua2

∂ca1→a2
> − ∂Ua2

∂ca2→a1

}
because the con-

stant 1 becomes irrelevant and the remaining values can
be divided off leaving E(W ) > c, which was assumed
in the problem for individual rationality. Because 1−γa2

γa2

is continuous and differentiable over the interval of [0, 1),
by the intermediate value theorem, there exists a γa2 that
satisfies the equality ∂Ua2

∂ca1→a2
= − ∂Ua2

∂ca2→a1
. The same

derivation holds for the opposite agent.


