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ABSTRACT

While diffusion of innovation topics in economics and majority
games in game theory have been widely studied, the impact of
economy-of-scale effects in aggregated decision making has re-
ceived little attention. In this paper, we present a basic model, the
Game of Scale, to study the effects of economy-of-scale in decision
making among a large pool of self-interested agents. We solve the
model’s static equilibria and present two dynamic decision mod-
els, one myopic and one trend-following. Most of the parameter
space converges quickly; however, the behaviors exhibited near
critical input values show drastic changes. We demonstrate how
trend-following can improve global outcomes over myopic deci-
sion making. Finally, we describe how the game can be externally
controlled.

Categories and Subject Descriptors

J.4 [Computer Applications]: Social and Behavioral Science—
Economics; K.4.4 [Computing Milieux]: Computers and Soci-
ety—Electronic Commerce

General Terms

economics, theory

Keywords

economy of scale, innovation diffusion, decision model, game the-
ory

1. INTRODUCTION
Understanding dynamics of agent cooperation in decisions ex-

hibiting economy-of-scale utility is of critical importance to soci-
ety. In technology adoption, we frequently hear about the econ-
omy’s dependence on oil and its concomitant effects on environ-
ment and global politics. By the U.S. government’s estimates,1

price manipulations by OPEC have cost the U.S. economy $7 tril-
lion in the past 20 years. Despite availability of cleaner alternative

1Source: http://www.fueleconomy.gov/feg/oildep.shtml
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sources of energy, the world is still chiefly driven by oil. Adoption
of cleaner fuels is driven by economics; when it becomes in a firm
or individual’s best interest, they will adopt the new technology.

While some technologies are immediately cheaper than their pre-
decessor, others are characterized by an economy of scale effect.
This means that the technologies do not become generally cost ef-
fective until a large enough population adopts them, either because
the increased market for the product drives innovation and pushes
costs down (e.g., the recent advances in affordable wind power),
or because the technology is characterized by network externali-
ties (e.g., hydrogen cars depend on a hydrogen distribution system,
which does not become cost effective until enough people own hy-
drogen cars).

Surprisingly, though innovation diffusion and network external-
ities have been widely studied, the vast majority of this work does
not explicitly model economy-of-scale effects. To the best of our
knowledge, no current work in innovation diffusion and similar top-
ics meets the following criteria: simplicity of the model in terms of
low dimensionality, explicit modeling of switching costs, and util-
ity functions that capture economy-of-scale effects. In this paper,
we propose an iterative, game theoretic model of technology adop-
tion that we call the Game of Scale, in which agents make choices
about whether or not to adopt a new technology. The cost of the
technology is a function of the number of agents who have adopted
it.

Real world examples of the game of scale abound in both de-
cision support systems and economics. For example, adoption of
biodiesel may be limited due to high initial costs, despite renewa-
bility and lower amounts of harmful pollution. Another example
is that the market success of more efficient hybrid and diesel vehi-
cles depends on manufacturers’ decisions to build and market them.
With larger scale production, the reduced marginal cost might al-
low these technologies to succeed in the market, but initial adoption
cost and uncertainty slow adoption.

From a consumer’s perspective, many substitutable yet incom-
patible products exhibit switching costs and network externalities.
Some examples are cell phone networks that offer free in-network
calls, social networking websites that allow individuals to adver-
tise their friendships, and portable music players with services that
only offer music in a non-transferable proprietary format. In such
products, switching costs can be in terms of terms of money, time,
and effort. Similarly, economies of scale are manifested in forms
such as cost, availability of aftermarket components, and compati-
bility with products owned by friends, family, and coworkers. Our
model also sheds light on the adoption—and obsoletion—of social
trends facilitated by advances in communication, such as the In-
ternet. In particular, our results show that trend-following leads to
more rapid adoption than myopic decisions. Mass media provides

329



a feedback loop for such trends, though the feedback may be real
or exaggerated.

In this paper, we generally refer to adoption of innovation rather
than diffusion of innovation or joining a coalition. We make this
distinction as we are focusing on cost-benefit mechanics instead of
dissemination of knowledge and risks of an innovation. Although
we focus primarily on economic decisions, the model captures as-
pects of multi-agent negotiation (as when robots decide to clear a
highway through rugged terrain) or the adoption of new Internet
technologies (like social networking applications).

We propose the Game of Scale as a means of exploring dynam-
ics of economy-of-scale effects on self-interested decisions. In this
iterative model, agents are repeatedly given the choice of switching
to a new innovation (or switching back if they are currently em-
ploying a new innovation), but only make the switch if it incurs
less cost. Each agent is characterized by its switching cost, drawn
from a probability distribution. The game has relatively low di-
mensionality which keeps the parameter space manageable, while
maintaining the basic features for modeling economies of scale.
Our findings show the innovation adoption characteristics of the
system, including adoption time and penetration. We also show
how the system can get stuck in non-optimal equilibria, how slow
transitions can be more costly, and how trend-following can pro-
duce better solutions than myopic decisions. This framework offers
a way to synthesize and analyze multi-agent systems incorporating
economy-of-scale decisions.

2. RELATED WORK
Modeling innovation diffusion has a rich history. Baptisa’s sur-

vey [1] is a useful synopsis of well-studied economic theories of
innovation diffusion. Taking a different approach, Sarkar [15] com-
pares and contrasts differing ideologies of many of the main model-
ing approaches. Though the field has advanced since Fichman [9]
surveyed empirical results of information diffusion models, Fich-
man’s work illustrates complexities of applying these models to the
real world.

Reinganum [14] found the Nash equilibria in a game theoretic
approach to innovation adoption timing in a duopoly setting. This
work differs from ours in two primary ways. First, it assumes that
the first firm to switch to the new innovation has explicit extra ben-
efit, implying a first-mover advantage. Second, while Reinganum’s
model generalizes to n players, she admits that it would be “ex-
tremely messy”. In contrast, the focus of our work is on the aggre-
gate behavior.

In the Minority Game, agents choose either 1 or 0 at each iter-
ation, and those in the minority are rewarded as a function of the
size of the minority [6]. Conversely, in the Majority Game, those
in the majority are rewarded accordingly. Dindo [7] extends these
models with asymmetric payoffs, making one side, either 1 or 0,
more favorable than the other. Intuitively, Dindo’s asymmetric ma-
jority game is very similar to our model. However, because Dindo’s
model does not use a switching cost, each successive iteration is in-
dependent of its predecessor. This independence sharply changes
the analysis and results, yielding chaotic behavior for many regions
of Dindo’s model.

Loch and Huberman [13] approach innovation adoption in a man-
ner similar to our work, with three major differences. First, they ad-
dress uncertainty explicitly, whereas we address it indirectly as ex-
pected values through marginal and switching costs to reduce sys-
tem dimensionality. Second, Loch and Huberman only briefly ex-
plore a small model with switching costs, whereas switching costs
are a primary feature of our work, and are based on a probit model.
Third, they use a linear model of utility from additional firms using

an innovation to compare performance (profit) of innovations. Our
approach is from the other direction; costs may be non-linear, and
are reduced asymptotically as more firms adopt the innovation.

Caselli and Coleman [5] present a model of ethnic conflict which
exhibits similarities to our model. While their ethnic conflict model
encompasses switching costs, it focuses on diseconomies of scale,
where as members of one ethnicity switch to another, and resources
are shared among a larger group. Their model additionally features
a method of expending the resources of one group to take over own-
ership of a common resource.

The model Stoneman presents [17] is a major inspiration to our
work, in that a firm switches to a new innovation if the current
benefits of adopting the innovation, based on the current number
of subscribing firms, outweigh the cost of switching. Ireland and
Stoneman model innovation diffusion in terms of the supply and
demand for the given innovation [11]. This is in contrast to our
model where the innovation directly lowers a particular cost. Stone-
man and David [18] investigated subsidy policy of innovation. Like
our model, this model separates a probit characteristic from the
added benefits of diffusion. It differs from our model in that it
only measures the effect of subsidy between two specific times and
assumes an epidemic learning model. Battisti and Stoneman [2,
3] investigate a large case study of inter- and intra-firm innovation
diffusion. They find that epidemic learning models do not seem
to be significant in intra-firm diffusion, but that rank/probit effects
do seem significant [3]. As epidemic learning is not central to our
model, this work suggests that our model may be most applicable
to systems where knowledge of the innovation is widespread.

Silverberg et al. [16] construct an explicitly evolutionary ap-
proach that incorporates factors such as mark-up price, equipment
costs, and investments. In contrast, we chose to focus on the dy-
namics of more simple mechanics.

Farzin et al. [8] apply dynamic programming to model innova-
tion adoption which can model an environment of many simultane-
ous innovations. While their model is capable of determining the
optimal time for firms to adopt a new innovation, they assume that
improvements and maturation of the innovation are completely in-
dependent of the number of firms using it. Alternatively, our model
provides positive feedback for an innovation based on the number
of firms that have adopted it.

Congestion games are resource utilization games where each
player’s payoff is a function of the number of players utilizing the
same resource. While the game we present is a congestion game by
this definition, congestion games are typically studied with negative
externalities and without switching costs. Blumrosen and Dobzin-
ski [4] find the computational complexity of finding optimal wel-
fare for different classes of congestion games, including those with
positive externalities.

3. THE GAME OF SCALE

3.1 Description
The Game of Scale has N agents and I distinct competing inno-

vations. At time, t, ni(t) agents are using innovation i. For conve-
nience we will sometimes denote ni(t) as ni. Each agent can only
use one innovation at a time, such that

N =
I−1

∑
i=0

ni. (1)

We limit most of the discussion in this paper to cover the case when
I = 2. For the purposes of discussion, we will consider innovation
0 to be the legacy technology, process, or strategy used, and in-
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novation 1 to be the new or invading innovation. An agent in the
game can represent a subset of a firm, or an entire firm, thus com-
bining inter- and intra-firm diffusion. To keep the game simple, we
assume that each agent uses a single unit of one of the two technolo-
gies. We denote the initial number of agents using an innovation as
ni(0). The n1(0) agents may be considered the entrepreneurs and
proponents of innovation 1, who have taken an initial risk (before
the game begins) to implement innovation 1.

The agent’s objective is to minimize cost. Each innovation has
a cost per unit time, ci, which is composed of a base cost, bi, and
a cost that decreases with the number of agents using it. In this
paper, we focus on a cost model with constant overhead cost, where
some resource is needed to adopt the innovation, but may be spread
without further cost over many adopters. The constant a is divided
equally among the number of agents with the innovation, ni, in
proportion to the total number of agents, N, yielding a cost of

ci(ni) = bi +
ai

ni/N
. (2)

In situations where further learning, experience, and refinement of
an innovation yield better results, an exponential cost model may
be more appropriate. Such a cost function may be represented as

ci(ni) = bi +aie
−dini/N . (3)

While any decreasing function of ni/N would suffice, we focus on
equation (2). Note that we do not account for risk in terms of the
innovation’s cost; we assume risk neutral agents and that risk has
been accounted for in the innovation cost functions.

Each agent has a cost of switching from one innovation to an-
other. Switching cost is effectively a probit/rank model, where we
assume that some characteristic of the agents defines their switch-
ing cost. This switching cost is constant for each agent throughout
the game. While an agent’s switching cost is private information,
all agents know the switching cost distribution, making the Game
of Scale a Bayesian game. To keep the game simple, the switching
cost, S, is the same regardless of the innovation being adopted.

In this paper we examine two switching cost distributions, nor-
mal and uniform, with mean µS. For the normal distribution, the
standard deviation is σS, yielding

S ∼ N(µS,σS). (4)

The uniform distribution has a range about the mean, wS, corre-
sponding to the standard deviation as σS = wS√

12
,2 is expressed as

S ∼U(µS −wS/2,µS +wS/2). (5)

The game of scale is iterated, with each agent choosing whether
to switch innovations at each step. The game concludes when an
iteration occurs where no agents switch.

3.2 Nash Equilibria
While congestion games that include positive reinforcement and

player-specific payoffs are not guaranteed to have pure-strategy
Nash equilibria [12], the switching costs, iterative nature, and com-
mon payoff scaling allow the game of scale to have pure-strategy
equilibria for many parameterizations. We define an innovation
schedule as a strategy consisting of a chronological list of inno-
vations and times, such that an agent will switch to a specified
innovation at a given time (e.g. switch to innovation 1 at time 7,
switch to innovation 2 at time 12, etc.).

2The variance of a uniform distribution on [a,b] is
(b−a)2

12 .

Any innovation schedule is a pure-strategy Nash equilibrium pro-
vided that the game’s parameters meet two criteria. The first crite-
rion is that no innovation, i, when used by a single agent, is cheaper
for an agent than any innovation in the schedule, j, when j is used
by all other agents. This criterion can be expressed as,

ci(1) > c j 6=i(N). (6)

If the first criterion is not met, then for all pure-strategy equilib-
ria, a number of agents will use this cheaper strategy permanently.
Intuitively, an innovation that is strictly dominated by another in-
novation cannot be part of a pure-strategy Nash equilibrium.

The second criterion for an innovation schedule to be a pure-
strategy Nash equilibrium for all agents is that no agent’s switch-
ing cost can be greater than the loss it will incur by skipping the
first switch when all other agents are performing two innovation
switches. Consider an innovation schedule where all agents start
with innovation h, switch to innovation i at time Ti and innovation
j at time Tj . If the agent with the largest switching cost will not
profit during the interval from switching twice, first to i and then
to j, then the agent’s optimal strategy in this case would be to only
switch once to innovation j at time Tj. Using Smax to represent the
largest switching cost, this criterion can be expressed as

(Tj −Ti)ch(1) > (Tj −Ti)ci(N)+Smax. (7)

The Pareto frontier in the game of scale consists of all alloca-
tions except for those with ni = 1, where the single agent has a low
enough switching cost such that the agent can switch to a different
innovation and still profit. All other allocations are Pareto efficient,
because each agent is using the same innovation of at least one
other. Because innovation cost is decreasing with the number of
agents, each agent would reduce at least one other agent’s outcome
by switching innovations.

Among innovation schedules, each switch from one innovation
to the next incurs additional cost to all agents. Therefore, the so-
cially optimal solution is for all agents to initially switch to the
innovation that scales the best (smallest ci(N)), and make no fur-
ther switches. If the game is being played for only a small number
of iterations, then the globally optimal strategy may be for some or
all agents to stay with their initial innovation.

Despite being Nash equilibria, the socially optimal equilibrium
is payoff dominant and not necessarily risk dominant. Risk-neutral
agents’ optimal strategy, given that all other agents are also risk-
neutral, is the socially optimal strategy in many parameterizations.
Similarly, risk-averse agents’ optimal strategy may yield a socially
costly outcome. In parameterizations and game states where pri-
vate switching cost is highly relevant in agents’ decisions with re-
spect to their risk tolerance, the best solution concept that can be
achieved is a Bayesian-Nash equilibrium. Because agents’ optimal
strategies involve simultaneous switching (and as soon as possi-
ble), quick communication is important. For this reason, we look
toward decision models that allow agents to signal and commit to
their intentions, with the goal of reaching close to the socially op-
timal solution with risk-averse agents.

4. DECISION MODELS
Because each agent is self-interested, the optimal decision for

any agent may not be the optimal decision globally. Here we de-
scribe three decision models based on different perceptions of cost.

When using two innovations, such as in our first two decision
models, we can reduce the number of variables by combining base
costs into a single variable. Consider an agent using innovation 0 in
a constant overhead game with two innovations. The cost savings
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of switching to innovation 1 for the next unit of time is

c0(N −n1)−c1(n1 +1)−S

= b0 +
a0

1−n1/N
−b1 −

a1

(n1 +1)/N
−S. (8)

It is convenient to let b = b0 − b1. We can express the profit for
switching for one time step, π0→1, by incorporating the expected
number of agents using innovation 1 at time t, E(n1(t)). The cost
of switching to innovation 1 is

π0→1 = −S+b+
a0

1−E(n1(t))/N
− a1

E((n1(t)+1))/N
. (9)

4.1 Equilibrium Decision Model
Since an agent knows the switching cost distribution, but not the

other agents’ actual switching costs, the agent must determine the
expected equilibrium of costs between innovations to make its deci-
sion whether to switch innovations. Here we assume that switching
costs are significant and that agents know that other agents’ switch-
ing costs will also be significant. As no agent stands to benefit by
switching innovations at the equilibrium, it is static with respect
to time. The equilibrium can be expressed as n1(t + 1) = n1(t) =
E(n1), allowing us to substitute n1 for E(n1(t)).

For this section, we assume that n1(0) = 0. By ranking the agents
according to switching cost, we can find the equilibrium points at
which the innovation will either succeed or fail based on which
side of the point the number of agents using innovation 1 resides.
Here we will use a uniform distribution of switching costs, but note
that this may be solved for other switching costs as well. Based
on agent rank, p, the expected switching cost for agent, Sp, can be
found as

Sp =
p+ 1

2

N
wS +µS −

wS

2
. (10)

To find the equilibrium points, we find the number of agents at
which the profit, π0→1, from equation (9) is 0. The equilibrium
point will only be reached if is profitable for at least one agent to
switch from the beginning; this initial switch will cause a cascade
until no agent has any further incentive to switch. We substitute the
agent switching cost as Sn1

from equation (10), and arrange for n1,
yielding

0 = 2wSn3
1 − ((2b+2µS +wS)N −3wS)n

2
1

+((2(a0 +b+µS +a1)−wS)N2 −2(b+µS +wS)N +wS)n1

− (2N2a1 − (2(a0 +b+µS)−wS)N +wS)N. (11)

The roots of n1 in equation (11) represent the number of adopters
of innovation 1 at which the optimal global behavior diverges for
adopting innovation 1. For all other values of n1 other than the
aforementioned roots, the agents will do one of three behaviors: all
agents will adopt innovation 1, all agents will revert back to innova-
tion 0, or, in the case of multiple real roots, the agents will converge
to one of the equilibrium points. The sign of the first derivative of
π0→1 represents the direction of innovation adoption on each side
of the cost equilibrium point. Direction, D(n1), is negative when
innovation 1 is cheaper. The derivative of π1→0 is similar, in that
it is negative when innovation 0 is cheaper. If both derivatives are
positive, the system is in equilibrium. Adoption direction from 0 to
1 is represented as

D0→1(n1) =
Na0

(N −n1)2
+

Na1

(n1 +1)2
− wS

N
. (12)

4.2 Myopic Decision Model
We define myopic decision making as each individual agent de-

ciding to switch innovations if and only if it yields a decrease in
cost for the next time step. When all agents in the game of scale
employ myopic decision making, the game simplifies in a number
of ways. Further, with myopic decision making, agents exhibit the
same behavior whether they decide simultaneously at each discrete
time, decide individually in sequence, or decide based on a ran-
domized process.

Using generic cost savings functions, ci with equation (9), we
find the best strategy with all myopic decision making agents is to
switch innovations when

c0(N −n1)−c1(n1 +1)−S > 0, if using innovation 0, (13)

and

c1(n1)−c0(N −n1 +1)−S > 0, if using innovation 1. (14)

Using equations (13) and (14), and the distribution of switching
costs, we can find the expected number of agents using innova-
tion 1, n1. Given a cumulative distribution function of switching
cost, F(x), the quantile function gives the expected value for the
qth quantile, expressed as F−1(q). We find the ranked expected
values of switching costs by evenly dividing the quantile space,
q ∈ [0,1], by the corresponding number of agents. Each agent’s
expected switching cost is represented by the center of its corre-
sponding quantile range, so we must offset each by 1/2 agent. We
assume the n1(0) agents initially starting with innovation 1 are cho-
sen independent of their switching cost. The agents with the lowest
switching cost using either innovation are the most likely to switch.
From this, we can break agents into the two innovations and rank
them by their switching costs, with the lowest switching cost at
n1(0), and highest switching cost at n1 = 0 and n1 = N. We can
express each agent’s rank, k(n1), as

k(n1) =







1− n1+1/2
n1(0) if n1 < n1(0)

n1−n1(0)+1/2
N−n1(0) if n1 ≥ n1(0)

(15)

We can now express the expected switching cost as,

E(S(n1)) = F−1(k(n1)). (16)

We can find the equilibrium by solving for the number of agents
using innovation i at time t, ni(t) when the game is in equilibrium,
meaning switching has no benefit or loss. This equilibrium is ex-
pressed as,

0 = c0(N −n1(t))−c1(n1(t)∓1)±F−1(k(n1(t +1)), (17)

where the sign of F−1(. . .) is negative if adopting innovation 0 and
positive if adopting innovation 1, opposite the sign of the additional
agent to the function c1. To find the adoption direction, we use
equations (13) and (14). If equation (13) is true, innovation 1 is
adopted, if equation (14) is true, innovation 0 is adopted, and if
both are false, then no agents will switch. Both equations (13) and
(14) cannot be true at the same time because a difference between
values cannot be simultaneously positive and negative. If we sub-
stitute into equation (17) the uniform switching distribution (equa-
tion (5)) and the rank formula (equation (15)) with direction chosen
by equations (13) and (14), we can find the difference equation for
n1 by solving for n1(t +1) as
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if c0(N −n1)−c1(n1 +1)−S > 0, then

n1(t +1) = n1(0)
c0(N −n1(t))−c1(n1(t)+1)

wS

+
n1(0)−1

2
(18)

if c1(n1)−c0(N −n1 +1)−S > 0, then

n1(t +1) = (N −n1(0))
c1(n1(t))−c0(N −n1(t)+1)

wS

+
N +n1(0)−1

2
. (19)

Equations (18) and (19) iterate until the game concludes with n1

converging when n1(t +1) = n1(t).

4.3 Trend-Following Decision Model
When the only information known by each agent is the number

of agents in each technology, myopic decision making is rational.
Due to the game of scale’s iterations, however, each agent could
maintain knowledge of the previous states (the number of agents in
each innovation at each time in the past). In this section, we present
a decision strategy that utilizes these historical trends as signals.
In this model, each agent approximates rational expectations with
a discount factor. We assume a non-trivial number of agents are
playing, as this gives trends statistical significance.

For our trend-following decision model, we combine a Taylor
series approximation with a discount factor. Taylor series approx-
imations are widely used in finance as they strongly reflect local
trends to predict short-term future results. The number of expan-
sion terms is typically two to three, with two often being an excel-
lent approximation for financial applications [10]. We argue that
the Taylor series approximation is well-suited for the game of scale
as a short-term trend prediction model. Agents’ decisions are based
on feedback and trends can rapidly change in the game of scale, as
prices in a market often do. Taylor series expansions offer good
local approximations and depend only as much history as is needed
for a given order of expansion (to make sure there is ample data
to approximate derivatives). Taylor series expansion is also a sim-
ple trend model which can be varied in accuracy by the number of
terms. Further, such trend-following can work even when agents
do not know the switching cost distribution.

The first three terms of the Taylor series are represented as

ñi(t +∆t) ≈ ni(t)+n′i(t)∆t +n′′i (t)
∆t2

2
+n′′′i (t)

∆t3

6
, (20)

where ∆t is the change in discrete time, and ni(t) is the number of
agents using innovation i at time t. The derivatives of ni(t) are ap-
proximated by finding the difference since the previous time. This
yields

n′i(t) ≈ ni(t)−ni(t −1), (21)

n′′i (t) ≈ n′i(t)−n′i(t −1), and (22)

n′′′i (t) ≈ n′′i (t)−n′′i (t −1). (23)

Because the Taylor series is an approximation and loses accu-
racy further into the future, we employ a discount factor, γ. We can
combine the discount factor with each approximated time-step to
produce an exponentially weighted expected cost value, E(ni). To
follow a trend, an agent needs to decide if it is better to switch in-
novations at the current time, t, or to wait some additional time, k,
at which to reevaluate. The agent must also apply the discount fac-
tor to the switching cost so that the switching cost scales properly

with the corresponding cost term when the switch occurs. Using
equation (20) as an approximation of the number of agents using
an innovation at a specified time, the predicted cost, c̃i→ j(k), to
transition from innovation i to innovation j, at time t +k is

c̃i→ j(k) = (1−δi j)γ
kS+

k−1

∑
l=0

γlci(ñi(t + l))

+
∞

∑
l=k

γlc j(ñ j(t + l)). (24)

In equation (24), the delta function, δi j ,
3 prevents adding a switch-

ing cost when the innovation is not changing. Using the predicted
cost for a given switching time, an agent may find the optimal time,
ki→ j , to switch from its current innovation, i, to innovation j as

ki→ j = argmin
k≥0

c̃i→ j(k). (25)

We can find the optimal innovation to adopt, ι, by evaluating the
predicted cost at each optimal switching time, ki→ j, as

ι = argmin
j∈I

c̃i→ j(ki→ j). (26)

From equation (26), an agent should switch to innovation ι only if
the optimal switching time is the current time, that is, ki→ι = 0. If
the optimal switching time is in the future, then it is in the agent’s
best interest to wait until the next time step and reevaluate its situ-
ation. Both the infinite series in equation (24) and the unbounded k

in equation (25) can be effectively approximated by truncating the
terms. O(γl) will dominate many practical cost model composi-
tions of a finite Taylor series expansion, such as our fixed overhead
cost model, making each successive term less significant.

While equation (24) can predict fast-moving trends regardless of
current innovation adoption, large increases and decreases are not
as meaningful near the boundaries where an innovation is nearly
ubiquitous or unused. Further, the cost functions may be unde-
fined for ni < 1 and ni > N. For both of these reasons, the number
of agents predicted for any innovation by equation (20) should be
clamped to within the range [1,N] by the cost function. Because
each agent is evaluating the utility of adopting each innovation, it
must consider itself when determining the costs.

Our method of approximation for the derivatives of each innova-
tion yields global predispositions as inputs. The three additional
initial conditions with the trend-following dynamic analysis are
n′i(0), n′′i (0), and n′′′i (0). If these values are known by all agents to
be 0 (as well as n′′i (1) = 0 and n′′′i (1) = n′′′i (2) = 0, because insuffi-
cient data will have been gathered up to that point), then the system
starts without any anticipation or preconceived beliefs about how
the particular game of scale will unfold. These values may be non-
zero due to “cheap talk” in a game theoretic or agent perspective, or
due to marketing and rumors in a more traditional economic frame-
work. Further, agents may collectively have a distribution of initial
derivatives, based on the information each obtained before the start
of the game. However, in our investigation of the impact of these
initial derivatives, we found that they only had significance when
the parameters were near a critical transition region.

3The Kronecker delta function yields 1 if i = j, 0 otherwise.
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5. ANALYSIS

5.1 Behavior Characteristics of the
Myopic Decision Model

In this section we examine effects of parameters in the game of
scale with constant overhead cost and myopic decisions. We imple-
mented a simple simulation to generate switching costs and iterate
equations (13) and (14) to convergence, as an exact analytic solu-
tion is infeasible due to the reciprocals in the difference equations.

While parameter choice has a strong impact on the game dynam-
ics, many choices of parameters yield trivial results. For example,
if switching cost is low and overhead cost, ai, is insignificant com-
pared to base cost, b, all agents immediately switch to the better
innovation. Alternatively, if switching cost is comparatively high,
no agent will switch.

Despite the wide ranges of parameters yielding trivial results,
the game of scale has interesting critical ranges where the outcome
is very sensitive to small changes in the parameters. To find how
each of the parameters impact the results, we initially sampled and
explored the parameter space, and found two types of behaviors.
Most parameterizations yielded quick convergence, where either a
new innovation had no benefit, or completely dominated the prior
innovation. The other parameterizations, with less drastic innova-
tion disparity, showed a slower convergence. To demonstrate this
range of behavior, we used a typical set of inputs that took many it-
erations for agents to converge to using innovation 1, and explored
the dynamics around this critical region. The set of parameters used
is N = 1000, n1(0) = 74, µS = 5.5, b = 6, a0 = 0.180, a1 = 0.282,
and wS = 2.2 for a uniform distribution and σS = 1.7 for a Gaussian
distribution.

Figure 1 shows the profit for each agent as computed by equa-
tion (13) for π0→1 and (14) for π1→0, given that all agents with
lower switching costs (or agents initially using innovation 0) are
using innovation 1. This graph uses the aforementioned parameters
and the Gaussian distribution of S. The small peak around n1(0) is
caused by the low switching costs for agents on both sides of n1(0),
since the innovation that each agent begins with is independent of
switching cost. Note that π1→0 is only positive for very low values
of n1(0), where the cost is too high for the few agents to absorb.
The profit π0→1 reaches 0 after n1 = 668, which is the equilibrium
according to the myopic decision making model.

Each graph in Figure 2 shows the results of simulations over a
range of one parameter, while holding all of the others constant.
The variable µS is not depicted since it has the same effect as b

when using myopic decision making. The outer graphs have a uni-
form switching cost distribution, whereas the inset graphs have a
Gaussian switching cost distribution. The solid line with square
data points is the percentage of agents that have chosen innovation
1, as given by n1/N. The dashed line represents time until conver-
gence.

Common across all graphs is increased convergence time near
critical points, where behavior undergoes a sudden, drastic change.
The uniform distribution has sharp linear regions, with the excep-
tion of high wS values, while the Gaussian distribution shows more
curved regions. The Gaussian distribution runs showed greater
variance, which is expected since the distribution’s variance was
2.7 times larger than the uniform distribution. Though not shown in
the figure, when the Gaussian distribution’s variance is decreased
to the depicted uniform distribution, the graphs are nearly identi-
cal. The only significant difference between the two plots is that
the convergence time was scaled to slightly longer times for the
Gaussian distribution. Likewise, but to a lesser extent, when uni-
form distribution was run with a correspondingly high variance, its
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Figure 1: Profit from equations (13) and (14) for each ranked n1

assuming that n1 −1 agents are using innovation 1. The profit

of switching to innovation 1 is indicated by the dark line, while

the profit of switching to innovation 0 is indicated by the light

line.

graphs resembled that of the Gaussian distribution. The Gaussian
distribution runs took longer to converge, independent of input vari-
ance. This is due to the increase in spread between samples further
from the mean, causing fewer agents to switch innovations at the
start. The longer convergence time can be seen in the graphs; while
the parameter value and percent in innovation 1 scales are the same
between the two distribution graphs, the scale of convergence time
for the Gaussian distribution graphs is 4 times larger.

The variable b has 3 distinct regions. The first region covers
negative values, where innovation 1 is more expensive than inno-
vation 0. In the second region, even though one innovation costs
less than the other, the switching cost dominates the agents’ deci-
sions. The third region is where the cost of innovation 0 pushes
agents to choose innovation 1.

The overhead cost, a1, has similar behavior to that of b, only
reversed. The only major difference is in the Gaussian distribution
in the transition before the full switch to innovation 1. Here, b has
a steep transition region, whereas a1 has a large jump and a shallow
transition region. The variable a0 closely resembles the region of
a1 with lower values. As b is fixed at a significant positive value,
we only observe a0 speeding up the transition to innovation 1.

The initial number of agents starting with innovation 1, n1(0),
also has 3 regions. While the high and low regions follow the
same explanation of b, the middle region increases linearly with
n1(0). This linear increase is due to switching costs, which prevent
agents from switching back to innovation 0, even though it is less
costly. The linear region is much smaller for the Gaussian, which
is caused by the higher variance and distribution itself. Though the
higher variance has a greater impact in shortening this linear re-
gion, the linear region in the Gaussian distribution is still shorter
than that in the uniform distribution with corresponding variance.
However, the high variance adds a second high-variance linear re-
gion in both Gaussian and uniform, with occasional peaks where
all agents adopt innovation 1.

When the variance (wS and σS) is low, switching costs are too
high for agents to switch with this parameter set. Once the vari-
ance is raised enough, the lowest switching values reach the cost
difference threshold and a number of agents switch to innovation 1.
As the variance continues to increase, the upper bound of switch-
ing costs continues to rise, putting more agents’ switching costs
too high to switch. High variance can also cause agents to continu-
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Figure 2: Convergence time and final fraction of agents using

innovation 1 with the myopic decision model, each row plot-

ted for the input variable shown as the horizontal axis, with

uniform (outer graphs) and Gaussian (inset graphs) switching

costs, constant overhead cost, and myopic decision model.
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Figure 3: Results of the trend-following decision model, de-

picted in the same manner as Figure 2.

ally flip when their switching costs are less than the innovation cost
difference. This behavior can be observed in the σS graph, where
convergence time is clamped to 40 iterations.

5.2 Behavior Characteristics of the
Trend-Following Decision Model

Trend-following decision making performed better than myopic
decision making in virtually all cases in terms of both global ef-
ficiency and time until convergence. Figure 3 shows the results of
three of the variables with graph scales and representation matching
that of Figure 2. For the depicted results, we used a discount factor
of γ = 0.4 and ñi approximated by three derivatives. Variables b

and a0 are omitted for brevity, as the changes in their behavior due
to the decision model closely resemble the changes of a1.

The graph of a1, which shows the varying overhead cost for the
trend-following decision model, closely resembles the correspond-
ing graph of the myopic decision model for the uniform switching
cost distribution. The two benefits from the trend-following are
that the range of non-ubiquitous adoption of either innovation is
smaller, and the convergence time for smaller a1 values is reduced.
The Gaussian distribution shows how trend-following allows the
agents to quickly push through costly transition regions to reach
the global optimum of full innovation 1 adoption. Spending less
time in these transition regions decreases the global cost.

The variables n1(0) and wS show similar behavior to that of a1.
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For higher values of wS and σS, trend-following yields a more ef-
ficient global optimum in terms of cost, but does not converge as
quickly as myopic decision making. The convergence times some-
times exceeded the graph, oscillating indefinitely.

With agents considering their future costs beyond the next time-
step, the switching cost becomes amortized. Switching cost amor-
tization explains why the graphs are scaled on the horizontal axis;
a decreased switching cost allows innovation adoptions for larger
regions of the parameters. We found that the varying the discount
factor, γ, scales the graph along the horizontal axis.

Amortizing switching costs in the myopic decision model often
produces results that beat the trend-following model in terms of
global efficiency, but take significantly longer to converge. While
amortization effectively lowers the relative switching cost, trend-
following accelerates the adoption of an innovation. However, the
trend-following decision model may also determine that waiting is
least costly and will reevaluate whether an innovation should be
adopted.

We also found that varying the degree of the Taylor series expan-
sion had little effect on the results. This was to be expected in most
cases, as a third derivative approximation requires at least three
time steps, so higher derivatives would tend to be unutilized. The
benefit of using the approximation with one term offered signifi-
cant benefit over a static model. While the second and third terms
only changed some behavior in higher values of variance, wS and
σS, we did not find conclusive evidence that one performed better
than the other.

6. PERTURBING THE GAME
An influencer overseeing the game may wish to have more or

all agents adopt innovation 1. If the switching costs are too high,
agents may not switch over to innovation 1 without subsidy, even if
the innovation is cheaper when widely adopted. Such behavior can
also exist if not enough agents have initially adopted innovation
1, as a critical mass is required to make the adoption profitable.
Even if it is possible for the influencer to force all agents to adopt
innovation 1, the agents may be unwilling to incur all the costs
themselves.

The quickest solution is to subsidize all of the differences be-
tween the costs of innovation 0 and innovation 1 for all agents in
innovation 0 at the same time. However, this incurs the largest
expense. Given each agent p’s switching cost, Sp, the subsidy re-
quired for all agents to switch to innovation 1 within 1 unit of time,
ηt=1, is

ηt=1 =
N

∑
p=n1

c1(n1 +1)−c0(N −n1)+Sp. (27)

If an influencer wishes to spend as little as possible to switch all
agents to innovation 1, but does not care how long it takes, subsidy
cost may be minimized. With this method, only the agent closest
to switching must be subsidized, and only if the agent needs a sub-
sidy. The influencer thus leverages the cost reduction of the game
mechanics. If all Sp for agents using innovation 0 at the start of
subsidy are ranked ascending with value (with agents already using
innovation 1 at the low end), the minimum subsidy cost to switch
all agents to innovation 1, ηmin, can be written as

ηmin =
N

∑
p=n1

max{c1(p+1)−c0(N − p)+Sp,0}. (28)

An influencer may wish to compromise between minimal time
and minimal subsidy. These compromises may be met by choosing
to increment p by more than one for each iteration in equation (28).

An influencer will likely base the subsidy value from the societal
cost of using a mix of innovations instead of purely using innova-
tion 1. Societal cost per unit time, Ω, is expressed as

Ω = n1 · c1(n1)+(N −n1) · c0(N −n1)−N · c1(N). (29)

From societal cost, we can see that cost will often be maximized
at some point between full adoption of either innovation. This is
important in terms of policy, since slow transitions can be more
costly than fast ones, and because agents may be stuck in a non-
optimal equilibrium.

If the game consists of agents using the trend-following deci-
sion model, an influencer can also change the course of the game
by manipulating the perceived trend derivatives. This method is
applicable in environments where the derivatives are estimated or
computed in a distributed manner.

7. CONCLUSIONS
The game of scale presented in this paper is a model of dynamics

of economy-of-scale decisions, such as innovation adoption. The
model is of low input dimensionality while preserving the core be-
havior, and is easily extendible. We explore four different basic
decision models. The most interesting behavior occurs around in-
puts where innovation adoption occurs slowly. Critical input values
cause sharp spikes in the convergence times, and in other ways re-
semble phase changes. When too few agents adopt an innovation,
the new innovation may either be discarded, or the agents will re-
main in equilibrium. Trend-following decision making can push
through these local optima equilibria to obtain a better global solu-
tion. Once a critical mass of an innovation has been reached, the
innovation may be widely and rapidly adopted. Adopting policies
that expedite transition to new cost effective innovations is benefi-
cial to a system in terms of societal cost.

Obtaining better models for economy-of-scale decisions is im-
portant in several regards. Applications include forecasting a tech-
nology’s market penetration for planning or investment purposes,
predicting the rises and falls of consumer trends, and engineering
a multi-agent system with self-interested agents to make effective
global agreements. Governments may wish to encourage adoption
of new technologies despite myopic views of the affected indus-
tries, just as the manager of a deployed multi-agent system may
wish to reward agents for incurring switching costs when switch-
ing to a better global optimum. Effectively applying these tools
requires understanding their effects on adoption. The mechanism
we present allows some global control over systems with decentral-
ized decisions based on self-interested agents’ individual utilities.
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