Trust as a Game Mechanic

Chris Hazard, PhD

Hazardous Software Inc. http://hazardoussoftware.com

Christopher J. Hazard, PhD

04/13/2011

from zap2it.com

from Seattle Weekly

from trutv.com

by tinyfroglet, cc

from supermanhomepage.com

from penny-arcade.com

Christopher J. Hazard, PhD

04/13/2011

Trust Us, We Know Trust!

- In econ, CS, psychology, etc.
 - No common definition
 - No common metrics
 - No common criteria or desiderata
- It's, you know, trust!

What Is Reputation?

- Belief that an attribute is a certain way
 - He's untouchable with sniper rifle
 - That game has boring grind
- Targets adverse selection
 - "r either of u a bot?""no. i is speeked englishing.""Look at my pic http://ishoponline.ru/b32tacr9"
- Hindsight, capabilities, signaling, statistics

What Is Trust?

- Econ: belief that another will not exploit
 Moral hazard
 - "help me kill this giant sewer rat on the crate"
 KABOOM "pwnd noob. got ur loot lol"
- Authentication vs. exploitation
 - soft security
 - "I am Spartacus"
- Forward-looking, strategy, game theory

What Can We Do With This?

• Working hypothesis:

Humans are actually rational*

*given limited computational bounds, unfounded beliefs of others, inaccurate capability assessments, inexplicable valuations, and some level of [im]patience

- Valuations, capabilities, and patience can be measured! → reputation
- Patience core of strategy \rightarrow trustworthiness

Hazardous Software

Patience (aka Intertemporal Discount Factor)

- Choices
 - \$100 today vs \$102 next week?
 - \$100 today vs \$10,000 next year?
- Qualitatively / intuitively related to trust
 - Psychology (e.g., Deutsch '73), Politics (e.g., Addison & Murshed '02), Economics (e.g., Whitmeyer '00)
 - E.g., Thieves → short-term gain for long-term risk & loss of trust (unless large pool of victims)

Discounting

- Uncertain future
 - Affect of delay on reward
 - Influenced by: patience, beliefs, risks, exogenous discount factors & value
- Expected utility =
 - Exponential, dynamically consistent: $\Sigma \ \gamma^t \ u$
 - Hyperbolic, realistic hazard rate: Σ 1/(1+ γt) u

Defining
StrengthTrustworthiness
Comparison $\overleftarrow{}$ </t

- Scalar
- Strength: Do something costly ⇒ will do something cheaper
- Comparison: Prefer b to c if b would fulfill more costly commitment than c
- Stability: Preferences stable if time shifted

Trustworthiness Isomorphic to Discount Factor

- Need valuations
- Compare two agents interacting with third in pure moral hazard situation
- Assumptions
 - Quasilinearity
 - Trustworthiness consistent enough
 - Individually rational
- All else equal, given definitions & assumptions, only factor that affects trustworthiness is discount factor

HAZARDOUS SOFTWARE

Creeping Sniper's Dilemma

Mirror Shield

Ghillie Hat

Digital Camo

Ninja Disguised As Tree

HAZARDOUS SOFTWARE

Christopher J. Hazard, PhD

04/13/2011 Original image from ShadowShield.com

- Single sniper optimal strategy; slow creep out = low risk $- \sigma_t = \frac{\overline{w}}{(1+\sqrt{1-\gamma_{s_1}})} \left(\frac{1-\sqrt{1-\gamma_{s_1}}}{\gamma_{s_1}}\right)^t$
- Multiple sniper optimal strategy
 - Match quickest visible discount strategy unless too risky

Incentivizing Players to Give Favors

- Rational player expected utility = expected benefit of relationship - expected cost of relationship - cost of favor
- Pure moral hazard
- How to sanction?
 - Tit-for-tat & variations
 - Ability to negate loss by reducing favors offered (derivatives about equal)
 - Figure out discount factor required to yield observed behavior

Combining Observations: Bayesian Inference

Optimal Level of Patience for Given Scenario

What Do We Want Out of a Reputation System?

- Unambiguous
 - Player type yields one reputation
- Monotonic
 - Better reputation yields higher expected value of relationship
- Convergent
 - Reputation should converge quickly near fixed point
- Accurate
 - Reputation should converge quickly if large errors/biases exist

Reputation System Dynamics

How Can We Measure Trust in a Game?

- Determine utility, perceived probabilities, and risk aversion for major decisions
 - Model game interactions as "economy" w/ player time
 - Assess for all scenarios including tactical/optimizing (unilateral) and strategic (bi/multilateral)
- Compute decision thresholds based on relationship between player preferences and patience (discount factor)
 - Dynamic evaluation
 - Involve narrative engine, social network, seller ratings, other exogenous info

HAZARDOUS Software

Christopher J. Hazard, PhD

04/13/2011

Trust as an Exploration Mechanic

- Quantitatively ensure "better" game
- Measure valuations & discounting distributions
 - Players' maxent regions
 - A priori playtesting
- In-game decisions:
 - Make sure level of trustworthiness required is below most users' trustworthiness
- Report user reputations

Trust as an Exploitation Mechanic

- Place player in edge situations
 - Ethical boundaries "what is your price?"
 - ~3 choices good
 - Clear trade-offs
- Use appropriately
 - Player overload
 - "Soap Opera"
 - Players sometimes like stability, e.g., fixed alliances

AZARDOUS Goftware

Challenges to Discount Factor Approach

- Rationality of agents
- Computational complexity: Nash equilibria, combinations of actions, uncertainty
- Disagreements over definition of trust (to include capabilities, reliability?)
- No "ideal" intertemporal discount model in most situations

What Enables Trust Psychologically?

Homophily

Image from WoW Cataclysm

Embedding

Image from Heavenly Sword

HAZARDOUS Software

Corroboration

Christopher J. Hazard, PhD

04/13/2011

Core Corroboration Caveat

• Provenance hard to assess!

What Trust is NOT

- Social norms & laws
 - Perceived value of relationships
 - Perceived impact of norms on relationships
- Measure of good vs evil
 - Trustworthy henchman & maverick hero
- Keeper of secrets
 - Strong relation, but not necessitated
- Reliability
- Intimacy

Where Isn't Trust the Main Principle?

- MMO Raid
 - Group cohesiveness incentivized by weakness of being alone
 - Mutual dependence
 - Trust "ratcheting"
 - Not much trust but seems like it
- Self-interest vs malice
 - Malice: easier to model in full-information games, harder in partial-information games

– Faux altruism: strategic relationship building

HAZARDOU

Trust & Society

- Enforcing/sanctioning often only tools to combat lies
 - Information asymmetry
 - When possible: incentive compatibility & revelation principle
 - Level of trust often req'd for system & market efficiency
- Too trusting with homophily, embedding, corroboration?
 - Trust researchers & high-ranking military leaders
 - Inability to play red in red v blue

Conclusions

- Trust important as games ascend further into social space
- Trust important in narrative
- Can model and compute trust metrics
- Use for game design

Questions?

