Balancing Game Mechanics Using Game Theory: Modern Analytical Approaches to Achieving Desired Gameplay Dynamics

Chris Hazard, PhD

Hazardous Software Inc. http://hazardoussoftware.com

North Carolina State University

Outline

- Game theory myths
- Basic concepts
- Risk
- Repeated games & discounting
- Knowledge & Belief
- Practical examples
- Conclusions

Myth 1: Game Theory Only Predicts What Game Theorists Do

- Origins
 - MAD
 - Game Theory Students
- Facts
 - Repeated games useful
 - Quantitative politics
 - Bruce Bueno de Mesquita
 - Protect against worst case

Myth 2: Game Theory is for Eggheads, Game Design is an Art

- Origin
 - Traditional game design
 - Bad models worse than none
- Facts
 - The math & science is now here
 - Finance (post 1970), politics (now), behavioral econ (achievements)
 - Save \$ in testing, player satisfaction???

Myth 3: Solving Games Is Hard

- Origins
 - Finding equilibrium is NP-Hard (exponential)
- Facts
 - Game designers are designers, not players
 - Solve upfront
 - Can model abstract version
 - Heuristics

- Often structure in data (e.g., Sandholm, AIJ, '02)

Christopher J. Hazard, PhD

6

Myth 4: Too Many Solutions

- Origins
 - Uncountable & infinite number of equilibria
 - Doesn't predict which one
- Fact
 - Good for games!

Image sources copyright Warner Bros., buycostumes.com, "leted" (http://www.flickr.com/people/leted/) 11/9/2010

Skill vs. Strategy

- Skill
 - Driven by capabilities, signaling, reputation
 - Measured using statistics, hindsight
- Strategy
 - Driven by preferences (valuations), sanctioning, trust
 - Solved using game theory, foresight
- Bounded rationality
 - Agency: tic-tac-toe vs sudoku vs chess
 - Solve game \rightarrow skill: winner/draw/random

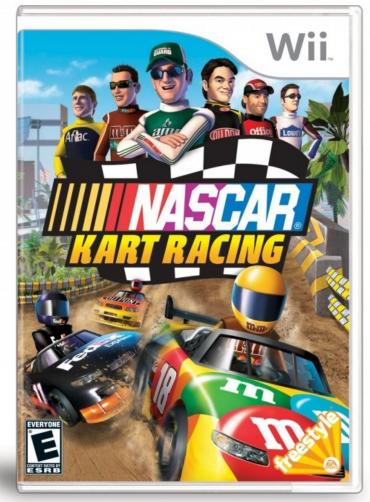
Desiderata

- Nash equilibrium (NE): optimal strategy given circumstances
 - Evolutionary Stable Strategy (ESS): Subset of NEs
- Pareto frontier: improve with none worse off
- Not always coincide
 - "Mexican Standoff"

Image copyright Universal Studios

Christopher J. Hazard, PhD

NASCAR



HAZARDOUS SOFTWARE

Christopher J. Hazard, PhD

11/9/2010

Ummm...

Christopher J. Hazard, PhD

11/9/2010

NASCAR: Drafter's Dilemma

	Cooperate Defe		efect	
Cooperate	3	3	-5	3
Defect	2	-5	1	1

- Red ahead, Blue behind, leave line together
- Payoff = number of cars passed
- Cooperate = allow other to jump back in line
- Defect = jump back in line without the other

Ronfeldt, First Monday J., '00

HAZARDOUS Software

Christopher J. Hazard, PhD 1

Dominant Strategy & Risk

	Stag		Hare	
Stag	10	10	0	8
Hare	8	0	7	7

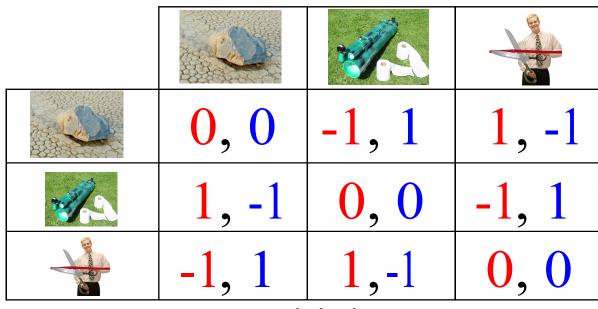
- Nash equilibrium
- Payoff dominance vs risk dominance
- Cooperation

Risk

- Expected Utility = Σ probability * utility - Quasilinearity
- Risk averse/neutral/seeking
- Save points, powerups/items, loss

Christopher J. Hazard, PhD

11/9/2010


Risk & Commitment Game of Chicken

	Sw	erve	Sti	raight
Swerve	0	0	-1	+1
Straight	+1	-1	-100	0 -1000

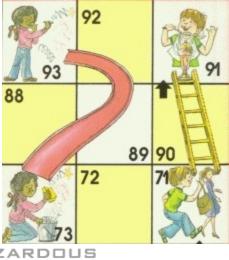
- Credible threats
 - Deliberately limit freedom
 - Leave opponent exit
 - Bluffs

Mixed Strategy & Risk

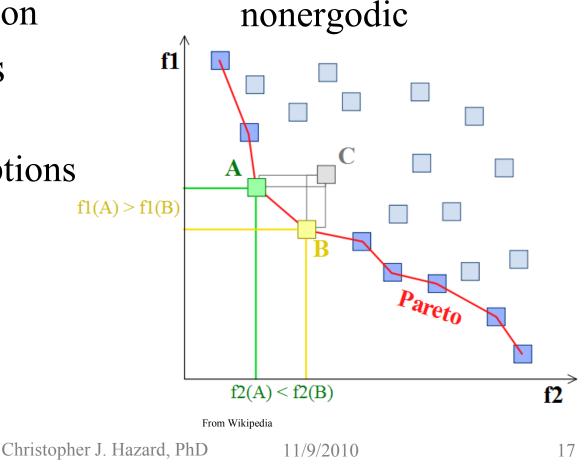
Street Fighter 4

- Intransitivity
- "Every unit overpowered"
- Forced risk

Repeated Games: Skill & Intransitivity


- Voting/Ranking intransitivity
 A > B > C, B > C > A, C > A > B
- Eigenvector centrality methods
 - Kiss-the-moose: the traveling wood chip
 - Relative weight & importance
 - Logarithmic variation used in NCAA
 - Google

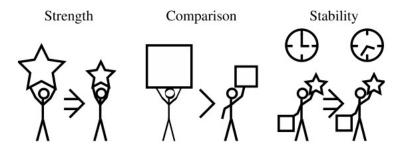
from www.cowart.info


Ergodicity & Pareto Frontier

- Nonergodic: transient states & sinks
 - Backward induction
- People not always follow ergodicity
 - Habits & Assumptions

Chutes and Ladders

Pareto Frontier
 – Pareto dominated =


Discounting

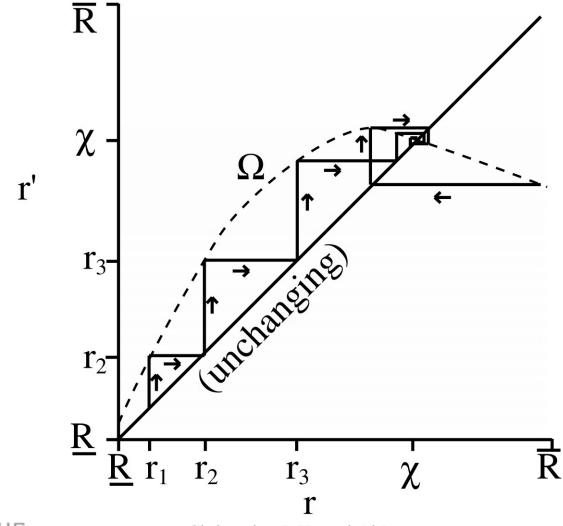
- Uncertain future
 - Affect of delay on reward
 - Influenced by: patience, beliefs, risks, exogenous discount factors & value
- Expected utility =
 - Exponential, dynamically consistent: $\Sigma ~\gamma^t$ u
 - Hyperbolic, realistic hazard rate: $\Sigma 1/(1+\gamma t) u$

Discounting In Repeated Interactions

- patience = discount factor discount factor + utilities = trustworthiness
 (Hazard & Singh, TKDE, '10)
- Dictates reciprocity (Hazard, COIN, '08)
- Risk perception

- Temporal pressure good: pacing vs caution
- Temporal pressure bad: frustration
- Amortize costs over expected usefulness

Feedback



- Positive feedback (amplify)
 - Done right: separates skill & strategy
 - Too strong / early: random outcomes
- Negative feedback (dampen)
 - Done right: keeps game engaging
 - "Elastic Band"
 - Too late: prolongs inevitable, random outcomes
 - Too much:
 - Frustrate good players
 - perverse incentives (not always bad)

Christopher J. Hazard, PhD

Feedback Analysis Power Ratio r: Player 1 DPS/Player 2 DPS

Christopher J. Hazard, PhD

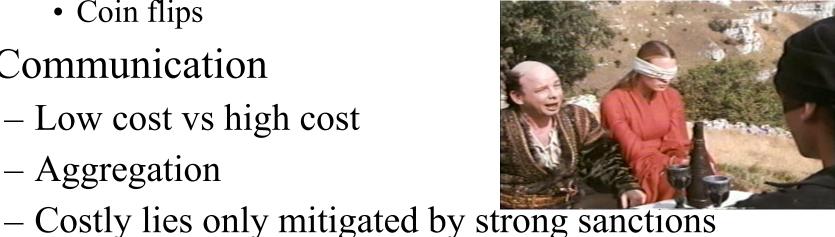
A Simple Game...

- Strategist
- Negotiator
- Artist
- Logician (e.g., programmer/lawyer)
- Impulsivist or risk seeker
- Risk avoider

Rules

Card is cost:

- A: 1
- 2:2
- 3:3
- • •
- J: 11
- Q: 12
- K: 13



- Winning bid gets price cost
- Highest total wins

Knowledge & Belief

- Mutual information vs common knowledge
 - Did the message arrive?
 - Trust
 - Out-thinking
 - Mixed strategy: human ability to be random
 - Coin flips
- Communication
 - Low cost vs high cost
 - Aggregation

Christopher J. Hazard, PhD

11/9/2010

The Princess Bride

Keynesian Beauty Pageant: Guess 2/3 the average

- Everyone choose number [0,100]
- Closest to 2/3 the average wins
- Results
 - Rationality is common knowledge: 0
 - Human experiments: 20's typical
 - Fads & bads

Image from the digeratilife.com

Exploration vs Exploitation

- Multiarmed bandit
 - Knowledge discovery
- Optimal point of trade-off
 - Discount factor
 - Opponents
 - Risk

Image source unknown AZARDOUS OFTWARE

• Strategic concealment

- Increase costs of discovery
- Baggy clothes hide position, weapon

War of Attrition

	H	awk	D	ove
Hawk	-5	-5	10	0
Dove	0	10	3	3

- Both want resource, one gets it
 - Auction
 - Taking out the trash
 - Sniping (boring vs winning)
- Combines repeated games, belief, risk, discounting Christopher J. Hazard, PhD 11/9/2010

Utility & Currency

- Common currency: **average-player time** – Skilled players & devoted players have most
- Find exchange rates for everything
 - If items purchasable in \$, *find exchange between player time and \$*
- Find amortization / discount rate

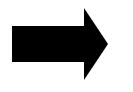
• Weapons for sale:

• Weapons for sale: - MC Hammer

- Weapons for sale:
 - MC Hammer
 - Britney Spear (+5 Auto-Tune bonus)

- Weapons for sale:
 - MC Hammer
 - Britney Spear (+5 Auto-Tune bonus)
 - Curse of the tax audit
 - Not immediate need to discount the effects first

Model Components


- Input sets
 - S: matrix of relative weapon strengths
 - C: vector of weapon costs
 - Multiple currencies \rightarrow average-player time
 - P: probability player will buy weapon in NE
- Constraints
 - At best, have full control over 2 input sets

Strength and Utility

S (strength: # of player 1 to defeat player 2)

	Hammer	Spear	Curse
Hammer	1	3	0.5
Spear	0.33	1	0.5
Curse	2	2	1

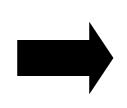
U	(uti	lity)
_		

	Hammer	Spear	Curse
Hammer	0.000	-0.043	0.095
Spear	0.043	0.000	-0.070
Curse	-0.095	0.070	0.000

С	(cost)
---	--------

	Cost
Hammer	0.23
Spear	0.56
Curse	0.21

One player loses all utility, another fraction
Spear vs Hammer: gain - loss 0.23 - (1/3 * 0.56)
Symmetric!


HAZARDOUS SOFTWARE

Christopher J. Hazard, PhD

Probabilities

U	(ut	tility)	

	Hammer	Spear	Curse
Hammer	0.000	-0.043	0.095
Spear	0.043	0.000	-0.070
Curse	-0.095	0.070	0.000

	Probability
Hammer	0.336
Spear	0.456
Curse	0.208

P (probability)			U (utility)				C (cost)		
	Probability	,		Hammer	Spear	Curse			Cost
Hammer	0.333		Hammer	0.000	-0.073	0.073		Hammer	0.255
Spear	0.334		Spear	0.073	0.000	-0.073		Spear	0.545
Curse	0.333		Curse	-0.073	0.073	0.000		Curse	0.200

Nonlinear Relations

- Quadratic
 - Example: gang of N units vs 1
 - X DPS, Y health
 - *N* deal N*X DPS to the *1*
 - *1* survives Y/(N*X) sec.: X * Y/(N*X) total damage
 - N each retain Y X * (Y/(N*X)) / N health
 - N each retain $Y Y/N^2$
- Unit synergies
 - Healers too strong => invincibility
 - Decreasing capabilities with damage

Gotchas

- "All models are wrong, some are useful"
- Impossibility
 - Good, Fast, & Cheap
 - Economies: budget balanced, incentive compatible, individually rational, & efficient

(Myerson & Satterthwaite, J. Econ Theory, '83)

- Voting: no ideal system (Arrow, J. Political Econ., '50)
- Revelation principle: honesty at what cost?
- Be careful with probability (e.g., Monte Hall problem)

Conclusions

- Game theory is useful for modeling people
- Game theory prevents griefs
- Make sure abstraction matches game

 Integration with AI
- Don't forget repeated interactions
- You can mathematically design the game you want players to play

