What Every Game Designer Should Know About Game Theory

Chris Hazard

Hazardous Software Inc.

http://hazardoussoftware.com

North Carolina State University

Outline

- Game theory myths
- Basic concepts
- Risk
- Repeated games & discounting
- Knowledge & Belief
- Practical examples
- Conclusions

Myth 1: Game Theory Only Predicts What Game Theorists Do

- Origins
 - MAD
 - Game Theory Students
- Facts
 - Repeated games useful
 - Quantitative politics
 - Bruce Bueno de Mesquita
 - Protect against worst case

Myth 2: Game Theory is for Eggheads, Game Design is an Art

- Origin
 - Traditional game design
 - Bad models worse than none
- Facts
 - The math & science is now here
 - Finance (post 1970), politics (now), behavioral econ (achievements)
 - Save \$ in testing, player satisfaction???

Myth 3: Solving Games Is Hard

- Origins
 - Finding equilibrium is NP-Hard (exponential)
- Facts
 - Game designers are designers, not players
 - Solve upfront
 - Can model abstract version
 - Heuristics
 - Often structure in data (e.g., Sandholm, AIJ, '02)

Myth 4: Too Many Solutions

- Origins
 - Uncountable & infinite number of equilibria
 - Doesn't predict which one
- Fact
 - Good for games!

Skill vs. Strategy

• Skill

- Driven by capabilities, signaling, reputation
- Measured using statistics, hindsight

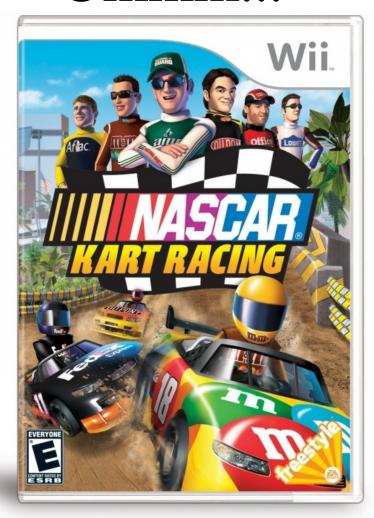
Strategy

- Driven by preferences (valuations),
 sanctioning, trust
- Solved using game theory, foresight
- Bounded rationality
 - Agency: tic-tac-toe vs sudoku vs chess
 - Solve game → skill: winner/draw/random

Desiderata

- Nash equilibrium (NE): optimal strategy given circumstances
 - Evolutionary Stable Strategy (ESS): Subset of NEs
- Pareto frontier: improve with none worse off
- Not always coincide
 - "Mexican Standoff"

Image copyright Universal Studios


NASCAR

9

Ummm...

NASCAR: Drafter's Dilemma

	Co	operate	D	efect
Cooperate	3	3	-5	3
Defect	2	-5	1	1

- Red ahead, Blue behind, leave line together
- Payoff = number of cars passed
- Cooperate = allow other to jump back in line
- Defect = jump back in line without the other

Ronfeldt, First Monday J., '00

Dominant Strategy & Risk

	Stag		Ha	are
Stag	10	10	0	8
Hare	8	0	7	7

- Nash equilibrium
- Payoff dominance vs risk dominance
- Cooperation

Risk

- Expected Utility = Σ probability * utility
 - Quasilinearity
- Risk averse/neutral/seeking
- Save points, powerups/items, loss

Risk & Commitment Game of Chicken

	Sw	erve	St	raight
Swerve	0	0	-1	+1
Straight	+1	-1	-100	0 -1000

- Credible threats
 - Deliberately limit freedom
 - Leave opponent exit
 - Bluffs

Mixed Strategy & Risk

0, 0	-1, 1	1, -1
1, -1	0, 0	-1, 1
-1, 1	1,-1	0, 0

Street Fighter 4

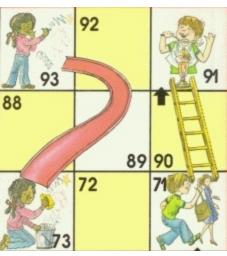
15

- Intransitivity
- "Every unit overpowered"
- Forced risk

Repeated Games: Skill & Intransitivity

- Voting/Ranking intransitivity
 - -A > B > C, B > C > A, C > A > B
- Eigenvector centrality methods
 - Kiss-the-moose: the traveling wood chip
 - Relative weight & importance
 - Logarithmic variation used in NCAA
 - Google

from www.cowart.info


16

Chris Hazard 4/7/2010

Repeated Games: Ergodicity

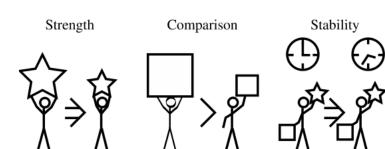
- Nonergodic: transient states & sinks
 - Backward induction
- Practically ergodic (.001% chance of return) vs mathematically ergodic
 - Unreachable gameplay
 - Martingale processes
- People not always follow ergodicity
 - Habits
 - Assumptions/Knowledge
- Open systems: evolutionary stable strategies

Chutes and Ladders

Chris Hazard 4/7/2010

Discounting

- Uncertain future
 - Affect of delay on reward
 - Influenced by: patience, beliefs, risks, exogenous discount factors & value
- Expected utility =
 - Exponential, dynamically consistent: $\sum \gamma^t$ u
 - Hyperbolic, realistic hazard rate: $\Sigma 1/(1+\gamma t)$ u

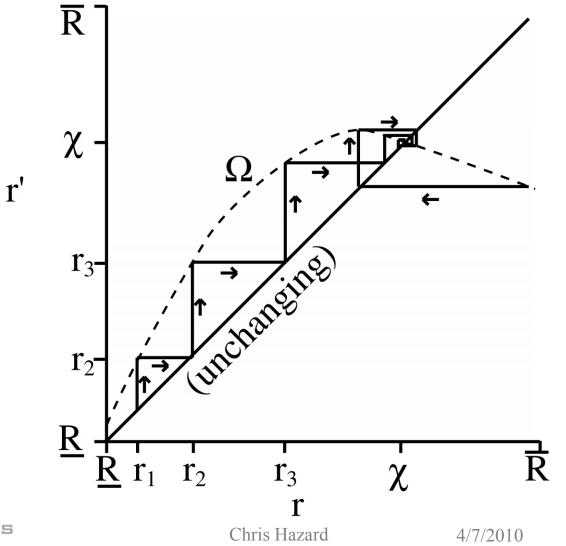


18

Discounting In Repeated Interactions

- patience = discount factor discount factor + utilities = trustworthiness (Hazard & Singh, TKDE, '10)
- Dictates reciprocity (Hazard, COIN, '08)
- Risk perception
 - Temporal pressure good: pacing vs caution
 - Temporal pressure bad: frustration
- Amortize costs over expected usefulness

Feedback


- Positive feedback (amplify)
 - Done right: separates skill & strategy
 - Too strong / early: random outcomes
- Negative feedback (dampen)
 - Done right: keeps game engaging
 - "Elastic Band"
 - Too late: prolongs inevitable, random outcomes
 - Too much:
 - Frustrate good players
 - perverse incentives (not always bad)

Chris Hazard 4/7/2010

20

Feedback Analysis Power Ratio r: Player 1 DPS/Player 2 DPS

A Simple Game...

- Strategist
- Negotiator
- Artist
- Logician (e.g., programmer/lawyer)
- Impulsivist or risk seeker
- Risk avoider

Rules

Card is cost:

A: 1

2: 2

3:3

. . .

J: 11

Q: 12

K: 13

- Bid each round
- Winning bid gets
 price cost
- Highest total wins

Knowledge & Belief

- Mutual information vs common knowledge
 - Did the message arrive?
 - Trust
 - Out-thinking
 - Mixed strategy: human ability to be random
 - Coin flips
- Communication
 - Low cost vs high cost
 - Aggregation

Costly lies only mitigated by strong sanctions

The Princess Bride

Keynesian Beauty Pageant: Guess 2/3 the average

- Everyone choose number [0,100]
- Closest to 2/3 the average wins
- Results
 - Rationality is common knowledge: 0
 - Human experiments: 20's typical
 - Fads & bads

Image from the digeratilife.com

4/7/2010 25

Exploration vs Exploitation

- Multiarmed bandit
 - Knowledge discovery
- Optimal point of trade-off
 - Discount factor
 - Opponents
 - Risk

Image source unknown

- Strategic concealment
 - Increase costs of discovery
 - Baggy clothes hide position, weapon

Chris Hazard 4/7/2010 26

War of Attrition

	Hawk		De	ove
Hawk	-5	-5	10	0
Dove	0	10	3	3

- Both want resource, one gets it
 - Auction
 - Taking out the trash
 - Sniping (boring vs winning)
- Combines repeated games, belief, risk, discounting

Chris Hazard 4/7/2010

Utility & Currency

- Common currency: average-player time
 - Skilled players & devoted players have most
- Find exchange rates for everything
 - If items purchasable in \$, find exchange between player time and \$
- Find amortization / discount rate

28

Player Encounter Model

- Game design structures
 - Poisson
 - Uniform
- Social structures
 - Self-similarity, power laws
 - Model using Kronecker products of edge matrices (Leskovec & Faloutsos, ICML, '07)

• Weapons for sale:

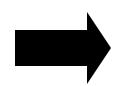
30

- Weapons for sale:
 - MC Hammer

- Weapons for sale:
 - MC Hammer
 - Britney Spear (+5 Auto-Tune bonus)

- Weapons for sale:
 - MC Hammer
 - Britney Spear (+5 Auto-Tune bonus)
 - Curse of the tax audit
 - Not immediate need to discount the effects first

Model Components


- Input sets
 - S: matrix of relative weapon strengths
 - C: vector of weapon costs
 - Multiple currencies → average-player time
 - P: probability player will buy weapon in NE
- Constraints
 - At best, have full control over 2 input sets

Strength and Utility

S (strength: # of player 1 to defeat player 2)

	Hammer	Spear	Curse
Hammer	1	3	0.5
Spear	0.33	1	0.5
Curse	2	2	1

U (utility)

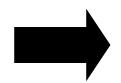
	Hammer	Spear	Curse
Hammer	0.000	-0.043	0.095
Spear	0.043	0.000	-0.070
Curse	-0.095	0.070	0.000

C (cost)

	Cost
Hammer	0.23
Spear	0.56
Curse	0.21

- •One player loses all utility, another fraction
- •Spear vs Hammer:

$$0.23 - (1/3 * 0.56)$$


•Symmetric!

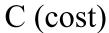
Probability

U (utility)

	Hammer	Spear	Curse
Hammer	0.000	-0.043	0.095
Spear	0.043	0.000	-0.070
Curse	-0.095	0.070	0.000

P (probability)

	Probability
Hammer	0.336
Spear	0.456
Curse	0.208


P (probability)

	Probability
Hammer	0.333
Spear	0.334
Curse	0.333

U (utility)

	Hammer	Spear	Curse
Hammer	0.000	-0.073	0.073
Spear	0.073	0.000	-0.073
Curse	-0.073	0.073	0.000

		Cost
7	Hammer	0.255
7	Spear	0.545
	Curse	0.200

Chris Hazard 4/7/2010 36

For the Math Folks

Constraints:

$$||C||_{1} = 1$$

$$||P||_{1} = 1$$

$$s_{ij} = \begin{cases} 1 \text{ when } i = j \\ 1/s_{ji} \text{ otherwise} \end{cases}$$

$$u_{ij} = 1/\max(1, s_{ij}) * c_{i} - 1/\min(1, s_{ij}) * c_{j}$$

$$PU=0$$

Gotchas

- "All models are wrong, some are useful"
- Impossibility
 - Good, Fast, & Cheap
 - Economies: budget balanced, incentive compatible, individually rational, & efficient

(Myerson & Satterthwaite, J. Econ Theory, '83)

- Voting: no ideal system (Arrow, J. Political Econ., '50)
- Revelation principal: honesty at what cost?
- Be careful with probability (e.g., Monte Hall problem)

Chris Hazard 4/7/2010

38

Conclusions

- Game theory is useful for modeling people
- Game theory prevents griefs
- Make sure abstraction matches game
 - Integration with AI
- Don't forget repeated interactions
- You can mathematically design the game you want players to play

