Coordination in multi-agent systems: The effects of economies of scale and switching costs

Christopher J. Hazard cjhazard@ncsu.edu

North Carolina State University

July 31, 2008

(=) (

Outline

Definitions and Motivation Game of Scale Model GoS Strategies GoS Simulation Results GoS Control & Design Minority Game: No Switching Costs Majority Game: Reversed Minority Game

July 31, 2008

Christopher J. Hazard, North Carolina State University

- ∢ ⊒ →

Coordination

- Coordination: agents desire to agree on same or corresponding choices
- Anti-coordination: agents desire to agree with as few others as possible (e.g. congestion)

Economies of Scale

Found in

- Energy distribution & storage
- Product compatibility
- Electronic Services
 - Connectivity
 - Services/portals
 - Formats
- Often ignored in innovation diffusion, network externalities

July 31, 2008

Switching Costs

- Endowment & choice
- Examples
 - Purchasing a durable good
 - Implementing a protocol
 - Switching time

July 31, 2008

Coordination & Innovation Diffusion

- > Epidemic learning, supply & demand, subsidies
 - Specific to econ
 - Stoneman et al. '86a, '86b, '86c, '03, '05
- Majority game
 - No switching cost, drastically changes model
 - Later in talk
- Punctuated equilibrium w/ linear cost
 - Only works with linear models
 - Loch & Huberman '99
- Congestion games
 - Diseconomies of scale
 - Blumrosen & Dobzinski '06

July 31, 2008

Christopher J. Hazard, North Carolina State University

The Game of Scale

- Strategic behaviors for agents & system controller
- A game that expresses:
 - Economies of scale
 - Many agents
 - Low model dimensionality (simple)
 - Switching costs
- Joint work with Peter Wurman (formerly at NCSU, now at Kiva Systems)

July 31, 2008

글 🖌 🖌 글 🛌

Game of Scale Properties

- N = # of agents
- $n_i(t) = \#$ of agents using *i* at time *t*
- Non-decreasing cost function, e.g.

July 31, 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Time	Cost		Agent A	Agent B	Agent C
	0	1	(S = 2)	(S = 4)	(S=1)
0	6	3	0	0	1
1	6	3	0: cost 6	0 : cost 6	0: cost 7
			1 : cost 5	1: cost 7	1 : cost 3
2	8	2	0: cost 10	0: cost 8	0: cost 9
			1 : cost 2	1 : cost 6	1 : cost 2

July 31, 2008

Christopher J. Hazard, North Carolina State University

Simple Pure-Strategy Nash Equilibria

- Strictly dominant cost functions
- Oscillating innovations
 - $(T_j T_i)c_h(1) > (T_j T_i)c_i(N) + S_{\max}$ (discount factors permitting)
 - Oscillation of subset of agents
- Socially optimal NE may be payoff dominant but not risk dominant

July 31, 2008

・ロト ・ 一下・ ・ ヨト・

Decision Models (Agent Types)

- Possibly risk averse agents
- Knowledge of switching cost distribution
- Types
 - Equilibrium
 - Myopic
 - Trend-Following
- Explore for 2 innovations

A B N A B N

Equilibrium Agents

- Switch immediately to expected equilibrium
 - Non-repeated game
- Find equilibrium:
 - Find switching costs with indifference to switching
 - Assume other agents with cheap switching costs will switch
 - Switch if profitable based on switching cost quantile given expected equilibrium
- Now or never (e.g. high retooling costs)

July 31, 2008

< ∃ >

Myopic Agents

- Low discount factor
- Switch from *i* to *j* only if c_i(n_i) > c_j(n_j + 1) + S
- Same behavior synchronous, Poisson, round-robin
- Wait-and-see

July 31, 2008

Myopic Agents' Profit

July 31, 2008

Christopher J. Hazard, North Carolina State University

Trend-Following Agents

- Discounted Taylor series
 - Extrapolate current trends
 - Use discrete approx for derivatives
- Cost to switch at time k
 - Cost of switch + cost before & after

$$egin{aligned} c_{i
ightarrow j}(k) &= (1 - \delta_{ij}) \gamma^k S + \sum_{l=0}^{k-1} \gamma^l c_i(ilde{n}_i(t+l)) \ &+ \sum_{l=k}^{\infty} \gamma^l c_j(ilde{n}_j(t+l)) \end{aligned}$$

Is now the best time to switch?

July 31, 2008

Christopher J. Hazard, North Carolina State University

Trend-Following Agents (2)

- Can approximate convergence
 O(γ⁻¹) > O(c_i(l))
- ▶ Clamp *ñ* to [1, *N*]
- 3 derivatives is plenty
- Public Monitoring
 - Media
 - Hype

July 31, 2008

(日) (同) (日) (日)

Dynamic Behavior

Myopic vs. Trend-Following: $n_1(0)$

July 31, 2008

Christopher J. Hazard, North Carolina State University

4 3 3

Myopic vs. Trend-Following: *a*₁

July 31, 2008

Christopher J. Hazard, North Carolina State University

- ∢ ⊒ →

- ∢ ∃ →

Myopic vs. Trend-Following: *w_s*

July 31, 2008

Christopher J. Hazard, North Carolina State University

Control & Subsidies

Can attain complete adoption

- Minimize time of adoption, costly
- Minimize required subsidy, takes time
- Determine societal cost of mixed innovations

July 31, 2008

Christopher J. Hazard, North Carolina State University

4 戸下 4 戸下

Game of Scale Dynamics

- Trend-following usually pushes innovation faster
- Critical mass is important
- Can become stuck suboptimally

July 31, 2008

Christopher J. Hazard, North Carolina State University

What If No Switching Costs?

- "Minority Game": Challet & Zhang
 - Bounded memory of history
 - Aggregate result public
 - Individual actions private
 - Models from spin glasses
 - Active research area since '97
- "Majority Game": Marsili
 - Apply minority game dynamics to reverse game
- Good intros: Esteban Moro '04, "Minority Games" by Challet et al.

July 31, 2008

Minority Game

- Inspired by Arthur's El Farol bar problem
- $N \gg 1$ agents
- Action: $a_i(t) \in \{-1, 1\}$
- $A(t) = \sum_{i=1}^{N} a_i(t)$
- Payoff: $-a_i(t)g(A(t))$
 - g is odd
 - $g(x) = \operatorname{sign}(x)$ or g(x) = x/N

• Public knowledge: $W(t+1) = \operatorname{sign} A(t)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Memories & Strategies

- Only remember last *m* results (bounded rationality)
- 2^m possible strategy sets to find $a_i(t)$
- Typed agents:
 - Endowed with set of strategies, function of *m* events
 - Evaluate each strategy after every round
 - Use strategy that has gained the most utility so far
 - Model of confirmation bias

July 31, 2008

ヘロト ヘ戸ト ヘヨト ヘヨト

Volatility & Information

Notation:

 \blacktriangleright \overline{x} : average over possible games • $\langle x \rangle_t$: average over long times Volatility • $\sigma^2 = \left\langle \left(A(t) - \langle A(t) \rangle_t \right)^2 \right\rangle_t$ Smaller σ^2 means more winners Free/"Unused" information in history • $H = \frac{1}{2^m} \sum_{\nu=1}^{2^m} \langle W(t+1) | \text{history} = \nu \rangle_t^2$ Measures info content of series & asymmetry of response to available info

July 31, 2008

Volatility

Figure from Esteban Moro, '04

July 31, 2008

Christopher J. Hazard, North Carolina State University

Information & Frozen Agents

Figure from Esteban Moro, '04

July 31, 2008

Christopher J. Hazard, North Carolina State University

Majority and Minority Game Themes

- Building up to markets
 - Trend followers (fundamentalists)
 - Contrarians
- Convergence (or lack thereof)
- Difficult to account for impact of own actions

July 31, 2008

< ロ > < 同 > < 回 > < 回 > < □ > <

Coordination of Best Strategies

 A^1 = result given a particular history Overlap: % agents with same outcome for same history

Figure from Kozłowski & Marsil, '03

Asymmetric Payoffs

- Dindo '04
- Replicator dynamics formulation
- Bifurcations in symmetric case
- Chaotic regions in asymmetric case (approx 2/3 of parameter space)

In Conclusion

- Economy of scale function secondary concern
- Switching costs very important
- Trend following (usually) good for coordination
- Asymmetry can slow/stop coordination

July 31, 2008

ヘロト ヘ戸ト ヘヨト ヘヨト

・ロト・日本・山本・山本・山本・