
ABSTRACT

HAZARD, CHRISTOPHER J. Trust and Reputation in Multiagent Systems: Strategies and
Dynamics with Reference to Electronic Commerce. (Under the direction of Professor Munindar
P. Singh.)

In multiagent interactions, such as e-commerce and peer-to-peer file sharing, being able
to accurately assess the trustworthiness of other agents is important for agents to protect
themselves from losing utility. We focus on an agent’s discount factor (time preference of utility)
as a direct measure of the agent’s trustworthiness in a number of settings. We prove that an
agent’s discount factor, when in context of the agent’s valuations and capabilities, is isomorphic
to its trustworthiness for a set of reasonably general assumptions and definitions. Further,
we propose a general list of desiderata for trust systems and show how discount factors as
trustworthiness meet these desiderata. We also show how discount factors are a robust measure
of trustworthiness when entering commitments with adverse selection and moral hazards.

When agents can significantly increase each other’s utility at a moderate cost, the socially
optimal outcome is for the agents to provide favors to each other. However, when agents can-
not support or enforce a market system, the favor environment forms a situation similar to the
repeated prisoner’s dilemma because each agent can unilaterally improve its utility by refusing
to help others. We present an adaptive tit-for-tat strategy that provides a mutually beneficial
equilibrium when agents may have differing private discount factors and when favor costs and
benefits are stochastic and asymmetric. This strategy enables agents to treat previously un-
encountered agents with caution, communicate about the trustworthiness of other agents, and
evaluate past communication for deception. We discuss the details of our simulation results
and the impact of various parameterizations and communication.

Building from the favor model, we examine more complex transactions with private discount
factors as a model for trustworthiness. We closely examine the case of simultaneous favors,
which comprise a single market transaction where two parties perform an exchange. Further,
we investigate more complex market models, where agents directly compete on price and quality.
We derive a number of methods that agents can use to obtain and aggregate information of
other agents’ discount factors and valuations.

Despite the large body of work in reputation and trust in dynamic multiagent environments,
no metrics exist to directly and quantitatively evaluate and compare reputation systems. We
present a common conceptual interface for reputation systems and a set of four measurable
desiderata, inspired by dynamical systems theory, that are broadly applicable across multi-
ple domains. We discuss the implications, strengths, and limitations of our desiderata. Our



discount factor as trustworthiness model performs well across the desiderata when measured
against other established reputation models from the literature. We apply our desiderata to
empirically evaluate the Amazon reputation mechanism in terms of actual ratings data obtained
by sellers on Amazon’s marketplace.
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DEDICATION

To those who have yet to be named, for soon it will be their turn to be trusted.
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Chapter 1

Introduction

Trust is an important aspect of interaction, from a child to a parent, from a buyer to a seller,
from one government to another. According to the Merriam-Webster dictionary, the term dates
back to the 13th century from Old English, stemming from a word that meant faithful and is
the root of the word true.

Economists have long examined the definition of trust, as markets depend on it to function.
In his survey, James [2002] consolidates many of the questions economists have debated about
the term, finding that definitions of trust are often paradoxical. In order for A to trust B,
A must believe that B will not exploit A, that is, B should not be incentivized to negatively
impact A’s total expected utility for B’s own gain. However, if B does not have an incentive
to exploit A, then A does not need to trust B because B will behave in a desirable manner.

Within computer science, trust has also been given many different meanings. In their sur-
vey, Jøsang et al. [2007] break trust into two main definitions: whether an agent is reliable and
whether an agent will exploit another, echoing the sentiments from economics. The level of trust
falls on a continuous spectrum as well, whether the trust is based on reputation, such as whether
a seller has offered quality products, or on policy, such as whether a specific agent is who it
claims to be [Artz and Gil, 2007]. Policy-based trust mechanisms are typically employed in the
disciplines of computer security, whereas softer security mechanisms use reputation measure-
ments. Softer security systems involving trust and reputation are dealt with more frequently
in multiagent systems, artificial intelligence, and e-commerce literature.

1.1 Trust in Multiagent Systems and E-commerce

Many kinds of business transactions can now be automated or semi-automated. Automation
is being used for transactions in procurement, low-touch sales, and stock and commodity trad-
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ing. As additional types of business-to-business transactions become automated [Subramaniam
and Shaw, 2002] and autonomous agents become more crucial components of business, deter-
mining effective strategies for the agents becomes increasingly important in the study of these
multiagent systems.

One primary question in dealing with such interactions is how much one agent should trust
another. Doing business with an agent that has a reputation for being trustworthy generally
has the benefit of reducing the risk of a poor outcome. Agents’ reputations and perceived trust-
worthiness can significantly affect the demand and price an agent will receive. This holds in
domains such as online auctions [Houser and Wooders, 2006] and supply chains [Sen and Baner-
jee, 2006]. Autonomous agents and humans often have differing trust models [Lewandowsky
et al., 2000], and we focus primarily on autonomous agents.

Ideally, from a trust perspective, the mechanisms under which agents interact would be in-
centive compatible (IC), meaning agents’ optimal strategies would be to be honest and truthful.
Whereas IC mechanisms can be designed for a variety of interaction models [Jurca and Falt-
ings, 2007], often maximizing profit for the agent running the mechanism is a higher priority.
For example, eBay’s (http://ebay.com) reputation system exhibits a bias toward transaction
volume to maximize profit [Rubin et al., 2005], because sellers can game the reputation system
[Khopkar et al., 2005]. Additionally, implementing an IC mechanism can be infeasible in certain
settings in terms of computation or communication [Conitzer and Sandholm, 2004].

Trustworthiness reflects the worthiness of a trustee to aid or protect a trustor. For example,
a trustworthy trustee will properly fulfill some task for a trustor or refrain from inappropriately
revealing a secret. As trustor a learns more about trustee b, the amount of trust that a places
in b should ideally approach the amount of trust of which b is truly worthy.

An agent’s reputation is the aggregation of publicly available information about the agent.
Such information is not necessarily accurate. Trust and reputation are often used in a com-
plementary fashion: an agent expects positive outcomes when interacting with another agent
that has a reputation for being trustworthy. Some systems are best described as trust systems
because therein agents determine whether another agent will do what it says it will, whereas
others are best described as reputation systems because therein agents determine and propagate
their beliefs about other agents. The mechanics of the two kinds of systems exhibit considerable
overlap [Ramchurn et al., 2004].

The need for trust systems arises in two situations: adverse selection and moral hazard
[Dellarocas, 2005]. Adverse selection occurs with typed agents, meaning an agent is predisposed
to some course of action due to its one or more (fairly constant) attributes. In particular,
adverse selection refers to the case when agents have information asymmetries about others’
intrinsic types such that an agent or item can masquerade as having a desirable attribute when
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it actually does not. An agent’s type can range from a strict behavior regimen, such as accepting
every offer or always producing high-quality items or being patient, to a parameter the agent
uses in evaluating its utility, such as its willingness-to-pay for some item. The presence of typed
agents means that agents may be able to improve their utility by determining which agents are
of what type, and interacting only with agents of a favorable type. An example of a typed agent
would be an agent selling faulty electronics at high prices. The agent may be unable to change
the quality or price of the goods it sells, and other agents may do best to avoid purchasing from
this agent. The ability of an agent to improve its utility by choosing with whom to interact is
strongly affected by the interaction mechanism. An example of where an agent may not be able
to choose the agents with which it will interact is an auction setting with perfectly substitutable
goods where buyers and sellers are randomly matched by the auctioneer at a set price.

Conversely, in a setting where agents choose trading partners, if agent amanufactures poorer
quality items than the other agents, knowing that a manufactures poorer quality items can
enable some other agent, b, to increase its own utility by not purchasing from a. Determining
trust with adverse selection can be framed as a multiagent learning problem, as the agents
signal each other to increase the accuracy of their beliefs of other agents’ types.

Moral hazards are created when agents do not bear the full cost of their actions and are thus
incentivized to perform actions that may harm the utility of others. For example, a seller who
deals with a gullible buyer has the moral hazard of falsely advertising its goods. To address
moral hazards, trust systems attach sanctions to unwanted behavior. If agent a performs some
unwanted behavior, then a trust system can attach some information to a. This information
can be used by a centralized mechanism or individual agents to sanction or avoid interacting
with a, with the effect that a would have an incentive to alter its behavior. An example of
moral hazard is an agent manufacturing an item of low quality but advertising it as high quality,
where an unsuspecting buyer would overpay the seller for the low quality item.

1.1.1 Trust Surveys

Ramchurn, Huynh, and Jennings [2004] separate trust into two main categories: system-level
trust and individual-level trust. They define system-level trust as a mechanism that forces
agents to be trustworthy. System-level trust encompasses incentive compatible models, where
agents are incentivized to be trustworthy, and also security models, where typically an agent
uses cryptographically secure mechanisms to authenticate itself, access certain information, or
perform certain actions. Individual-level trust is where an agent has beliefs and acts upon
those beliefs. Ramchurn et al. separate individual-level trust into models that gather ratings,
aggregate ratings, and promote ratings, and also mention sociocognitive agents (e.g., belief-
desire-intention agents).
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The theme of dividing trust into its moral hazard and adverse selection components is
the primary categorization by Dellarocas [2006]. Like Ramchurn et al., Dellarocas divides
reputation systems into those that are incentive compatible (elicit honest feedback), and those
that do not. Dellarocas also looks at reputation as a dynamic property, and breaks reputation
phases into the initial, steady-state, and end-game, and discusses decentralization of reputation
systems. He examines various problems of reputation systems, such as Sybil attacks, strategic
manipulation, and how statistically, some agents will have a bad reputation simply because of
noise in observations.

Artz and Gil [2007] group related work into four categories. The first is policy-based trust,
which encompasses credentials and building on trusted authorities. The second is reputation-
based trust, where agents use past interactions to predict future actions. Artz and Gil group
the remaining work into what they call general models of trust, which include game theory
as well as affective models, and trust in information resources, to denote the work of applied
trust systems, particularly with the web, the semantic web, and collaborative filtering. The
dimensions Artz and Gil use to classify trust systems are the targets of trust assessment, the
representation of trustworthiness, methods of modeling the trust, management and aggregation
of the data, computation aspects, and the purpose of the trust system.

The dimensions that Mui, Halberstadt, and Mohtashemi [2002] describe are more of a
classification system than a means of clustering related work. Their dimensions are the breadth
of simultaneous contexts that a trust system is applicable, whether the system uses individual
or global aggregations of trust measures, whether the trust system assigns a reputation from
one individual across all individuals who share an attribute or credential, whether and how
individuals bias their observations, and how strongly a priori beliefs versus broad aggregate
results versus deep propagation of reputation across agents affect reputation.

Sabater and Sierra [2005] classify related work on a number of dimensions. First is the
conceptual model, whether the agents use cognitive beliefs or apply game-theoretic or Bayesian
models. Another dimension is the information source, whether the information is directly
observed, indirectly witnessed, assumed based on the agent’s social roles, or an a priori prejudice
based on observable information. The agents can obtain this information from their visibility
type, which can be individual, meaning that the agent’s observations are relative to itself
typically from frequent interaction (moral hazard situations), or global, meaning observations
that are common across agents and the interactions are infrequent for a given agent pair (adverse
selection situations). The granularity of the measurements can be categorized by the number
of contexts in which the trust is measured and whether information is aggregated between the
contexts. Sabater and Sierra make a further distinction as to whether the trust information
observed and exchanged between agents is Boolean or continuous, and whether the model uses
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a single value for a measure of reliability. They group the related work by how it handles agents’
behaviors, whether the system depends on honest agents, assumes agents may bias information
but not outright lie, or whether the system handles lying agents.

Jøsang, Ismail, and Boyd [2007] describe trust as a soft security mechanism. Their detailed
view of the trust literature includes the following dimensions. First is reliability trust versus
decision trust, which closely resembles the division between adverse selection and moral hazard
as described by Dellarocas [2006]. This distinction is further split into collaborative filtering,
which begins with the assumption that all information is truthful and filters accordingly, and
reputation systems, where agents are assumed to be possibly untrustworthy and agents build
trust. Jøsang et al. enumerate trust into the following types: provision trust, meaning quality
of service; delegation trust, which is like provision trust, but performed on behalf of the agent;
access trust, where an agent obtains access to information, resources, or control; identity trust,
where an agent makes a claim about its identity; and context trust, which is provision trust at
a certain task. They group trust systems into those that deal with qualified, affective ratings,
those that use specific, single attribute ratings, and those that use general overall ratings. The
final classification dimensions of trust systems are the extent that the reputation architecture is
decentralized, the trust aggregation method (i.e., summation, Bayesian, discrete values, belief
models, fuzzy models, flow models), and the application (i.e., eBay, expert sites, product review
sites, Epinions, BizRate, Amazon, Slashdot, Kiro5hin, Google, supplier reputation systems,
scientometrics). Jøsang et al. also discuss related work based on the problems managed, such
as the low incentive for agents to rate others, biases toward positive ratings, unfair ratings,
detecting unfair ratings, Sybil attacks, quality variations over time, discrimination, and ballot
box stuffing.

1.1.2 Common Dimensions

In this section we examine the commonalities between the ways the other surveys classify trust
systems. We group the dimensions as follows.
Incentive Compatibility. Incentive compatible means whether or not it is an agent’s
optimal strategy to play honestly as to its own type. This means that a rational agent will
truthfully reveal any information necessary for an interaction. Given this property, a system
generally does not need an additional reputation system unless it is part of the mechanism itself.
A trust system can potentially be incentive compatible in only one direction. For example, an
interaction mechanism where an agent pays for a commercial airline ticket upfront is generally
incentive compatible for the buyer because the buyer is not given the opportunity to take the
ticket without paying for it. The dimension of incentive compatibility is discussed by Ramchurn
et al. [2004] and Dellarocas [2006].
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Access versus Action. Access trust means verifying an agent’s identity and granting
it permission to perform some task, typically involving security and encryption. Access trust
enables action trust, which involves agent interactions that depend on an agent knowing another,
such as provision, delegation, and reciprocation. These two types of trust are of different scopes
and are usually disjoint in the related literature. Trust systems are classified into these two
categories by Ramchurn et al. [2004], Artz and Gil [2007], and Jøsang et al. [2007].
Focus on Adverse Selection. Adverse selection arises when an agent advertises a product
or service at a quality different from the actual quality. This discrepancy between reported
quality and actual quality does not necessarily mean that the agent is intentionally deceiving;
adverse selection indicates nothing about intent. Adverse selection involves agents with a fixed
type or attribute that the agent cannot easily change, for example, the quality of good that the
agent can deliver. The solution to this problem of asymmetric information is for agents to learn
about other agents’ types and to be able to signal an agent’s type to other agents. Statistics,
data mining, and machine learning are useful tools for an agent to learn the quality of another
agent’s goods or services, but given a noisy measurement process and enough agents, some
outlier agents will receive incorrect reputations. Adverse selection often arises when agents
interact infrequently. For example, if an agent makes a one-time purchase from an online store,
the rate of interaction between the agent and the online store is relatively low with respect to
the transaction volume of the online store. Adverse selection is a trust dimension in the work of
Sabater and Sierra [2005], Jøsang et al. [2007], Dellarocas [2006], and Ramchurn et al. [2004].
Focus on Moral Hazard. When an agent has the ability to increase its own utility at
another agent’s expense, the system is said to exhibit moral hazard. Moral hazard is different
from adverse selection because the agent is in control of its actions. Statistics generally do
not work well for modeling moral hazard, and the strategies must instead be examined in a
game-theoretic manner. Moral hazard can be managed by credible sanctioning, where one agent
can decrease another’s utility if the other agent is not cooperating. Most real-world situations
contain a mixture of adverse selection and moral hazard. However, few trust and reputation
systems explicitly handle moral hazard, which is usually left to game-theoretic solutions, such
as contrite tit-for-tat [Wu and Axelrod, 1995]. Moral hazard is supported as a dimension of
trust by Sabater and Sierra [2005], Jøsang et al. [2007], Dellarocas [2006], and to a lesser extent
by Ramchurn et al. [2004].
Dimension Dependency. Different trust systems measure trust in a different number of
dimensions, such as performance or quality. For example, a simple measure of the probability
of a positive interaction [Jøsang, 1998] would have one dimension, a measure of discount factor
and reliability [Smith and desJardins, 2009] would have two dimensions, and a detailed review
of a video game, including the graphics, sound, story, and gameplay qualities might have four
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dimensions. Under other names, dimension dependency is covered as a trust system property
by Sabater and Sierra [2005], Jøsang et al. [2007], and Mui et al. [2002]. Artz and Gil [2007]
break dimension dependency down into simple reputation versus separation into beliefs, risk,
and utility.
Aggregation Breadth. Aggregation breadth is the extent by which a trust system is
centralized or distributed, and governs the mechanism by which trust information is aggregated.
A fully centralized trust system would accurately record information about transactions in one
location and disseminate this information. In contrast, agents must keep track of all information
on their own in a fully distributed trust system. Prior beliefs that agents have about other
agents, particularly agents that have obtained credentials and conditional probabilities, factor
into the initial biases and affect aggregation. Dividing trust systems by their breadth and
method of aggregation is discussed by Ramchurn et al. [2004], Jøsang et al. [2007], Mui et al.
[2002], Artz and Gil [2007], and Dellarocas [2006].

1.2 Approach: Trust Dynamics and Patience

Throughout the trust and reputation system literature, two techniques that stem from game
theory are commonly applied for designing such systems. Signaling models are those in which
agents attempt to assess private attributes about other agents, whereas sanctioning models are
those in which agents behave strategically in an attempt to maximize their utility [Dellarocas,
2006].

In real-world environments where agents must decide whether or not to trust one another,
clean distinctions between signaling and sanctioning are rare. For example, an agent that al-
locates its own bandwidth and other resources may have little influence over the amount of
resources it has available. Yet, it may be strategic and rational within those constraints. A
manufacturer can acquire a good reputation for having tight quality controls, but new man-
agement may wish to see larger profit margins and may strategically slowly cut back on the
quality controls as long as it remains ahead of its competitors.

Despite the complexity of the real world, few reputation systems are specifically designed to
address both sanctioning and signaling. Typically, authors of reputation systems that involve
signaling devise a variety of malicious behaviors to test their system against. Examples of the
adversary agents include randomized acts of unfavorable behavior [Kamvar et al., 2003, Huynh
et al., 2006], building up and spending of reputation [Srivatsa et al., 2005, Kerr and Cohen, 2009,
Salehi-Abari and White, 2009], Sybil attacks where an agent creates multiple identities [Kerr
and Cohen, 2009, Kamvar et al., 2003, Sonnek and Weissman, 2005], and collusion with other
agents [Kamvar et al., 2003, Sonnek and Weissman, 2005, Srivatsa et al., 2005]. Other systems
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Figure 1.1: Trust and reputation life cycle from an agent’s perspective.

are designed specifically around strategic agents to ensure good behavior, but do not attempt
to measure attributes of the agents [Jurca and Faltings, 2007, Hazard, 2008]. A minority of
reputation systems, such as that by Smith and DesJardins [2009], examine both signaling and
sanctioning explicitly.

Our general view is that trust is looking forward in time with respect to sanctioning and
strategy, whereas reputation is looking backward in time with respect to signaling and deter-
mining agents’ types. We discuss this dichotomy in further detail in Section 2.1. Our primary
focus is on rational agents and e-commerce settings, rather than on modeling human behavior.
Emotional and cognitive factors of trust are thus outside of the scope of our study.

1.2.1 Trust and Reputation Life Cycle

Although the specifics of particular trust and reputation systems can differ greatly, they all
share some commonalities. In this section, we unify the systems to a common set of states and
actions as outlined in Figure 1.1.

The following are the different states an agent can go through in a transaction in the presence
of an open reputation or trust system. An agent is not limited to being in one state at a time,
but can maintain multiple accounts and participate in multiple transactions simultaneously.
No Identity The agent begins without an identity or account in the system. This state
is applicable for open systems where agents may enter or leave. From this state, an agent
may acquire an identity and move to the reputation state. Acquiring an identity may be as
trivial as using a nonvalidated screen name in an open text field where the agent simply claims
to have some identity. Alternatively, the system may require extensive background checks,
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verifications from official organizations, or significant payments to create the account. An
agent may asynchronously acquire multiple identities, and may acquire identities in different
domains or with different populations of agents.
Reputation Each identity that the agent has created will have its own reputation within
the community. An agent may discard an identity, either actively by deleting an account or
passively by simply no longer using an identity. When an agent decides to (or is forced to)
interact with another agent, it must select an agent (or agents) with which to interact. It may
communicate with this target agent, performing extensive negotiations and setting up a formal
contract. Alternatively, the agent may simply rely on norms or not actively communicate with
the target prior to the transaction.
Contract A contract expresses a promise or commitment to engage in some behavior. Con-
tracts may be well-defined and policed by an external system or may be as ill-defined as the
agents’ a priori assumptions. From a contract, the agents involved undergo some transaction
with the other agents involved. The transaction can involve active participation, such as ex-
changing money for an item, or a transaction can be passive, such as all agents timing out and
not performing any task.
Resolution After a transaction has taken place, an agent will update its own beliefs about
the agents involved in the interaction. The agent can evaluate, report, and communicate its
new beliefs about another agent based on the results of the transaction, either directly to
other agents or via a centralized reputation reporting mechanism. Concurrently, the agent
may revisit the results and decide that further transactions are required. To set up future
transactions, the agents may renegotiate to a new contract after having observed the other
agents. A renegotiation can have positive connotations, such as providing additional services to
supplement a previous transaction, or the renegotiation can have negative connotations, such
as an agent demanding reparations from a transaction that did not fulfill the contract.

1.2.2 Rational Agents

Our approach to trust is from the standpoint of a self-interested rational agent. A rational
agent maximizes its expected utility when planning and executing actions. In environments
with uncertainty, rational agents must model uncertainty in order to compute their valuations.
This extends to multiagent settings, where rational agents need to model other agents’ behavior
to devise a utility optimizing strategy. When all agents are rational, the best response strategies
of all the agents are known collectively as Nash equilibria.

In general, we hold that rational agents can be described by the following attributes:
Valuations. A rational agent employs utility theory, assigning a utility value for every
possible state and a utility cost for every possible action. The valuations may be a function of
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the state of the world. A goal could be described as a state with high utility. A valuation can
be further used to model risk aversion by using a nonlinear function. For example, an agent
could value having $0 with utility of −100, having $10 with utility of 1 and having $100 with
utility of 2.
Capabilities. An agent has certain capabilities, that is, ways to affect other agents and the
environment. Capabilities may be probabilistic or have probabilistic chances of success. We
include reliability within an agent’s set of capabilities. We define reliability as the probability
distribution of how a capability will impact another agent, that is, the probability distribution
over the valuations that another agent will receive.
Initial Beliefs. When an agent begins operating in an environment, it has certain beliefs
about the state of the world and about other agents. Such beliefs may be correct or incorrect,
as well as probability distributions or single data points.
Computational Bounds. An ideal rational agent has infinite computational power, that
is, it can solve the Nash equilibria of any game instantly before it needs to perform an action.
Realistically, computational power is limited in some way, and so an agent may only have an
approximately best strategy under some bounds.
Time Preference. An agent’s patience, which we will refer to formally as time preference,
means the mechanism by which the agent’s perceived value of something changes as a function
of the time that the value will be realized if all else is held constant. For example, a greedy
agent may not spend money to maintain equipment because it does not value its future utility
nearly as much as its present utility. Time preference can reflect the expected lifetime of the
agent, uncertainty, and external factors.

Rational agents with different values of the aforementioned attributes can behave differently
in otherwise identical situations. Due to the differing behavior, one agent could be considered
more trustworthy than another. But which of these attributes define an agent’s trustworthiness?

Our working hypothesis is that time preference, particularly when evaluated in light of valu-
ations and capabilities, is what determines whether a rational agent is trustworthy. In treating
trustworthiness as an attribute of an agent independent of its capabilities and valuations, we
differentiate trustworthiness from uncertainty in the same way that moral hazard is differen-
tiated from adverse selection. Time preference is a measurable and quantifiable attribute for
evaluating an agent’s optimal strategy.

We primarily consider interactions between only two agents, with multiparty interaction
generally beyond the scope of this work. Further, we focus on trustworthiness with respect to
rational agents and therefore exclude the emotional aspects of trust.
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1.2.3 Discount Factors as Trustworthiness

A key intuition is that a trustworthy agent is patient, i.e., interested in long-term relationships:
for example, we expect a store for local residents to sell better wares than a tourist trap. In
general, anything is worth less in the future than now. With exceptions such as for storage,
degradation, and depreciation, having money or a usable item is generally worth more now
than later for reasons such as the uncertainty of the future and opportunity to use the item
or money in the mean time. For example, most people would prefer $100 today over $100.01
next week. But one’s premium for immediacy is bounded: typically, most people would prefer
$1,000 tomorrow to $10 today. An agent’s intertemporal discount factor reflects its break even
point for the present versus the next time unit. For example, if you are neutral between $90
today and $100 tomorrow, then your discount factor is 0.90 (per day).

Further, trustworthiness and patience can vary with the context : a nearly bankrupt business
facing its creditors may sell items without sufficient quality checks. We use context to refer to
the risk environment that an agent facing, such as facing a pending bankruptcy or succeeding
in a steady market. Outside of the mathematical use with respect to variables, we use domain
to refer to a type of interaction, such as the role of a provider in a web services market versus
the role of a seller in an online auction.

Definition 1 An agent employs exponential intertemporal discounting in some context when
there exists some γ ∈ [0, 1] such that for all future times, t ∈ [0,∞), the agent’s utility gain,
U , from some event in that context at time t is U = γtu, where u is the utility the agent would
have perceived had the event occurred at the present time (t = 0).

An agent’s discount factor captures how much it would value something at future points
in time relative to the present. To put it into colloquial terms, an agent with a low discount
factor will “take the money and run” whereas an agent with a high discount factor is “in it for
the long haul.” A higher discount factor can yield a greater payoff because the agent is not
myopically optimizing, but this rule has exceptions [Ely and Välimäkiz, 2003, Hazard, 2008].

An agent’s discount factor captures how much it would value something at future points in
time relative to the present. Internally, an agent’s discount factor can be influenced by intrinsic
factors, such as uncertainty [Rubinstein, 2003], patience, or expected lifetime in a situation for
an individual, or extrinsic factors, such as the cost of capital for a firm driven by market rates.
The observable value that an agent uses for its discount factor can also be affected by external
factors, such as time pressure and competition as discussed in Section 5.1.5, which may be
different from a more consistent internal discount factor.

Knowing other agents’ discount factors is important in determining an opponent’s optimal
strategy. In more complex models, discount factors can be used along with costs and valuations
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to explain agents’ reliability and quality of goods and services. Assuming an agent can measure
its own reliability, an agent with a high discount factor may take steps to increase its reliability
if that meant that other agents would stop using its services if it did not.

Even though we intuitively associate trustworthiness with the expectation of future long-
term relationships, most current approaches do not necessarily reflect this intuition. Existing
measures of trustworthiness [Ramchurn et al., 2004] typically use arbitrary ratings or are highly
dependent on the domain, distribution, and manner of interactions. A small body of related
work has discussed some aspects of the relationship between discount factors and trust [Addison
and Murshed, 2002, Deutsch, 1973, Whitmeyer, 2000]. However, with two exceptions [Hazard,
2008, Smith and desJardins, 2009], we are unaware of related work directly employing discount
factors as a measure of trustworthiness.

Although discount factors are widely used in economics, finance, behavioral sciences, game
theory, and artificial intelligence, each agent or firm is typically assumed to have a publicly
known discount factor. In economics and finance, a convincing argument is made that a discount
factor is common among all of the participants in a given situation. The argument is agents
can alternatively choose to invest their money in large markets with public and competitive
rates of return for a given level of risk, and therefore discount rates are fairly consistent for
a given venture. Assuming discount factors are public is reasonable for certain areas such as
finance, but even professional economists’ opinions of an appropriate discount factor can have a
wide distribution [Weitzman, 2001], further suggesting an agent’s discount factor is specific to
each agent. Discount factors are influenced by preferences of the person, agent, or organization.
Though discount factors may be used strategically by opponents, many models require publicly
known discount factors. Conversely, we focus on agents maintaining private discount factors
and measuring others’ discount factors.

1.2.4 Comparing Reputation Systems

Reputation is an important concept and computational reputation systems are popular pri-
marily because there are strong intuitive connections between an agent’s reputation and both
the utility that it obtains and the utility another agent obtains when interacting with it. For
example, an agent can obtain more money for the same products on eBay1 simply by having
a more positive reputation [Houser and Wooders, 2006]. A rational agent would only build
and maintain a positive reputation if doing so maximizes utility. For example, in commerce
environments, an agent can strategically build up and then expend its reputation in order to
monopolize a market [Sen and Banerjee, 2006].

1http://ebay.com
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Many authors propose desiderata to motivate their trust and reputation systems [Huynh
et al., 2006, Kamvar et al., 2003, Zacharia and Maes, 2000]. However, we are unaware of a
general characterization of desiderata for reputation systems that are quantitative, objective,
and applicable across a wide range of domains. We present four desiderata, focusing on what
quantitative properties make one reputation system more effective than another. Devising
widely applicable metrics for trust is considered an important open problem [Barber et al.,
2003] and is the focus of this work.

Our approach to comparing reputation systems involves examining the dynamics of a strate-
gic agent’s reputation. That is, we subject each reputation system to a utility maximizing agent
with intertemporal discounting. We determine if and how the utility maximizing agent is able
to circumvent the reputation mechanism’s ability to measure whether the agent is desirable for
interaction.

1.2.5 Challenges to Approach

A major challenge to studying trust and reputation of autonomous agents in e-commerce is
that real-world data is practically nonexistent. Autonomous agents do not yet make criti-
cal evaluations and decisions in real-world settings in e-commerce. Online markets involving
individuals, such as eBay, are largely driven by people and so human psychology makes the
environment different compared to one run by rational agents. On the business scale, powerful
automated markets for procurement and logistics, such as that provided by CombineNet,2 are
at the forefront of technology. However, even in the most advanced systems, most pricing,
quality, reputation, and trust evaluations are not yet performed by autonomous agents. We
are therefore limited to mathematical proofs, simulations, and analogous experimentation using
rationally thinking, business-minded people.

Another technical challenge is computational complexity. Determining which agents are
lying, computing optimal strategies and Nash equilibria for a rational agents in complex envi-
ronments, and combining observations to maximize information gain and minimize assumptions
can all be intractable for complex problems. Despite these challenges, we are still able to com-
pute approximate results for many complex situations.

From a philosophical perspective, an argument is that trustworthiness is more than just
patience. For example, consider a patient agent (one with a high discount factor) that is
incompetent at all tasks it can perform. In a multiagent system, this agent would still attempt
to take advantage of any other agent that did not know of its incompetency. Whereas one
may argue that such an agent should be labeled untrustworthy, we instead denote this behavior
under uncertainty; the other agents will soon learn that either the agent is either impatient

2http://combinenet.com
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or incompetent, leaving uncertainty between the two choices. We further argue that the agent
under question is, at its core, trustworthy, but is simply in a desperate situation.

The exact nature of time preference that should be used is a matter of some debate in
economic settings [Groom et al., 2005]. We use the method of discounting from Definition 1 for
one primary reason and two secondary reasons. The primary reason is that it is dynamically
consistent, whereas hyperbolic discounting is not [Rubinstein, 2003]. The secondary reasons
are more for convenience. Exponential discounting is widely used in economics and artificial
intelligence literature. The other secondary reason is that exponential discounting only uses one
parameter; dealing with trustworthiness as a single number and yields more tractable results
and analysis.

1.3 Summary of Contributions

Motivating Question 1 In an e-commerce setting with rational, self-interested agents, wherein
discount factors are a common tool for modeling agent patience, are discount factors effective
as a trustworthiness measure, that is, is modeling another agent’s discount factor, valuations,
capabilities, and environment sufficient to judge whether the agent will behave in a manner that
can be described as trustworthy?

Contributions

Claim 1 Discount factors are isomorphic to trustworthiness given an agent’s valuations, ca-
pabilities, and environment when trustworthiness is defined as a single scalar value that char-
acterizes the long-term favorability of one agent over another to some third agent that will be
engaging in interaction with one of the two agents being judged for favorability.

We develop a model of trustworthiness as a discount factor that naturally captures the
future long-term relationship intuition. Formalizing the intuition between trustworthiness and
discount factors requires key assumptions that are not generally made explicit in related work.
In Chapter 2, we formalize these important technical assumptions, which characterize trust-
worthiness from the perspectives of the trusting agent (preference property), the trusted agent
(strength property), and the stability of the situation over time. In doing so, we not only
delineate some key assumptions regarding trustworthiness but also obtain an objective trust
measure in the nature of the discount factor, isolating an agent’s objective trustworthiness from
subjective effects. Our primary result is a proof that, given our widely applicable assumptions
and definition of trustworthiness, any trust measure that collapses trustworthiness down to an
individual objective scalar (real value) is isomorphic to intertemporal discounting.
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We find that the discount factor model satisfies additional properties. Specifically, we iden-
tify crucial desiderata for a computational approach to trust. Our discount factor model meets
these desiderata whereas other approaches generally fail some of them.

A significant advantage of a formal objective basis for trustworthiness is that it supports
powerful approaches for reasoning about trust and for one agent to infer the trustworthiness of
another based on the latter’s actions. In Chapter 5, we consider a series of e-commerce situations
where buyers and sellers estimate each other’s trustworthiness based on signals such as the
quality of products sold, prices offered and accepted, and eagerness to conclude a transaction.
We show how information on trustworthiness may be aggregated and estimated, and conclude
with a discussion of the implications of discount factors as trustworthiness measures.

Motivating Question 2 How can reputation systems be evaluated and compared when faced
with strategic agents for a given environment? More specifically, what measures can characterize
how a reputation system will behave when faced with strategic agents, what measures indicate
which reputation system will be more effective at correcting agents’ beliefs, and what measures
indicate which reputation system will be best at distinguishing between different agent types?

Contributions

Claim 2 Measurable dynamic properties of a reputation system, namely, monotonicity, accu-
racy, convergence, and unambiguity, are useful for characterizing a reputation system. Measur-
ing and comparing these properties comprises an effective method to evaluate and compare the
resilience of reputation systems against exploitative strategic agents.

We approach reputation from a dynamic systems perspective. In Chapter 6, we motivate
and formalize the following quantifiable desiderata.

Monotonicity. Agents who would provide favorable interactions should acquire better repu-
tations than agents who would provide less favorable interactions. For example, a seller
who always offers high-quality items at a low price should have a better reputation than
an agent who produces defective items that it advertises as being of high-quality (and
thus sells at a high price).

Unambiguity. An agent’s reputation should be asymptotically unambiguous, meaning an
agent’s asymptotic reputation should be independent of any a priori beliefs about the
agent held by some observing agent. An unambiguous reputation system would, as the
number of interactions tends toward infinity, always yield the same reputation for a given
agent regardless of the specific interactions. Consider two otherwise identical buyers (that

15



is, identical in their valuations for goods of a given quality, utility functions, capabilities,
influence over peers, and so on) who initially disagree about a seller’s reputation. Both
buyers should converge to an agreement about the seller’s reputation after a sufficiently
large number of interactions, assuming the seller behaves steadily in the same manner
with each buyer.

Convergence. Agents’ reputations should converge quickly. For example, it is preferable to
be able to learn after a smaller number (rather than a greater number) of interactions
whether a seller offers high or low-quality products, regardless of past beliefs, provided
the seller keeps to its type. A reputation system must meet unambiguity for convergence
to be meaningful.

Accuracy. Reputation measurements should be accurate regardless of prior beliefs. For ex-
ample, if a buyer incorrectly believes that a seller produces high-quality items, the buyer
should quickly learn an accurate reputation value for the seller.

Our desiderata apply to both adverse selection and moral hazard, with or without the propa-
gation and aggregation of reputation information. The measurements from the desiderata can
answer a wide range of questions, such as whether one reputation system is better than another,
whether agents would benefit from using a reputation system, how stable the system is, and
how quickly agents can build up or lose their reputation. Rather than examine and compare
reputation systems against a list of possible attacks [Huynh et al., 2006, Kerr and Cohen, 2009,
Kamvar et al., 2003], our desiderata compares general dynamical properties of the system as
affected by strategic agents.

We apply our desiderata to a diverse group of trust and reputation mechanisms from the
literature. In each case, we pair off an agent against an ideal rational agent. We primarily focus
on the interaction between two agents, but we examine a few larger settings. We find a variety of
desirable and undesirable behaviors across the models, finding the general mechanism proposed
by both Hazard [2008] and Smith and desJardins [2009] to exhibit the most favorable results
of those studied, although this mechanism does not adapt to a continuous range of behaviors
as easily as some other systems. We analyze some real-world data retrieved from Amazon, and
find that the data shares strong similarity to that shown by rational agents on its underlying
Beta reputation model. We discuss the strengths and limitations of our desiderata.

Motivating Question 3 Given rational agents with initially private discount factors in a set-
ting where the agents can only offer favors to one another at a cost to themselves, such as
peer-to-peer file sharing, unenforced market transactions, or resources within cloud computing,
what rational yet mutually beneficial strategies can agents use to choose whether to offer favors
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to other agents given different interaction models, such as where the favors are alternating or
simultaneous, and follow a simple stochastic process?

Contributions

Claim 3 Although many repeated games involving trust settings have an infinite number of
equilibria, many strategies are both mutually beneficial and intuitive, such as strategies that
balance agents’ abilities to sanction one another and strategies that incentivize agents to remain
in a relationship.

In some environments, agents have recourse when one agent does not follow through with
its commitments as part of an agreement, such as using a legal system to prosecute a breach of
contract. However, using legal means or external enforcement mechanisms to seek retribution
for an unfulfilled commitment is often more expensive than simply ostracizing the agent that
did not fulfill its commitment. For example, an agent may deliver an item that is of low quality
but technically meets the specifications of the contract, or an agent may simply not reciprocate
uploading data to another agent in a peer-to-peer computing.

We examine various models of agent interaction stemming from favor reciprocity. The first
is when agents stochastically and unilaterally decide whether to offer the other a favor, where
the cost and value of the favor is chosen from a known distribution in Chapter 3. The second
situation is when the agents are paired for a transaction, that is, both agents are simultaneously
deciding whether or not to uphold their end of an exchange, which is the basis for many e-
commerce transactions. This work is described in Chapter 4.

From these models, we find equilibria where agents hold sufficient ability to sanction each
other such that rational agents sustain mutually beneficial relationships. We employ the basic
principles of Chapter 2 in that agents are evaluating each others’ discount factors. In Chapter 6,
we compare our discount factor favor reciprocity model from Chapter 3 to other reciprocity
models in the literature. We find that, aside from one limitation of our reciprocity model on
continuous domains, our model outperforms all the others when faced against rational agents.
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Chapter 2

Defining Trustworthiness and Trust

Systems

To derive and state formal results about trust, we need to have a specific definition. As trust
definitions are often mathematically informal, we create our own formal definition of trust in
the context of multiagent systems, motivated by e-commerce, that enables us to derive useful
results. In this chapter, we begin with common definitions of trust and reputation. Then,
we show that a general definition of trustworthiness is isomorphic to discount factors in the
context of agent’s valuations. Further, we present general desiderata for trust systems rooted
in common dimension classifications of trust systems.

2.1 Signaling Versus Sanctioning

The game-theoretic designations of signaling and sanctioning games are relevant to trust and
reputation systems because they address the key mechanism of whether an agent must decide
who to choose or how to act [Dellarocas, 2006, Jurca and Faltings, 2007]. In this section,
we propose a way of determining the influence of signaling versus sanctioning and how these
properties affect the design of a trust or reputation system.

In a signaling setting, agents have private information that they may use to their advantage.
The asymmetric information can be used strategically to cause adverse selection, where agents
perform transactions with agents they believe to be desirable but end up with an undesirable
interaction. An example of a signaling situation is where agents are purchasing mass-produced
products and deciding whether to buy the product from one manufacturer or another based on
quality, price, and features. In this case, agents signal to each other what they believe about
other agents (specifically, the manufacturers). Statistical and probabilistic measures are most
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effective at measuring agents’ behaviors in the signaling setting.
Sanctioning mechanisms are useful in cases of moral hazard. Moral hazard occurs when

agents’ utilities are uncorrelated, meaning that one agent’s gain may yield another’s loss, and
one agent can directly exercise control over another’s utility. A purchase where a buyer pays the
seller and then the seller has the option of not sending the product to the buyer is an example
case of moral hazard. If the seller will not be sanctioned for its behavior and will have no future
relations with the buyer, then it has no incentive to send the product. Sanctioning must be
credible for the agents involved to be successful, and may be performed by the agent affected
by refusing future transactions, or by other agents policing the system. Modeling behavior in a
sanctioning environment with rational environments means employing game theory techniques
to find Nash equilibria.

As we remarked above, many real-world situations do not fall cleanly into either signaling
or sanctioning situations. An agent may have some control over the quality of its products.
In real-world scenarios, it is unlikely that an agent would be unable to make any changes to
quality (pure adverse selection) or for an agent to have perfect control over quality (pure moral
hazard). This distinction is blurred further by agents having differing levels of patience that
influence their strategic behavior [Hazard, 2008, Smith and desJardins, 2009] and also by the
blurred distinction of whether an observation was intentionally communicated [Castelfranchi,
2006]. The amount of sanctioning comes down to how much explicit control an agent has over
its communications, and also intent, which may be subtle.

In broad terms, we can distinguish two varieties of trust that apply in many computa-
tional settings with intelligent agents. We abstract the terms Competence and Integrity, as
described by Smith and DesJardins [2009], into Capabilities, which are what an agent can do,
and Preferences, which are what an agent will do. From these definitions, it is clear to see
that when agents want to determine which other agents have capabilities, they need a signaling
system that looks into what the agents have done before. Agents need a sanctioning system
to determine another agent’s preferences and ensure that the agent will perform a desirable
behavior in the future when it has the choice. This is consistent with the notions of reactive

and anticipatory coordination [Castelfranchi, 1998].
To examine the role of signaling versus sanctioning on reputation systems, it is instructive

to consider three interrelated terms—trust, trustworthiness, and reputation—that are used in
nonstandardized ways in the literature. We begin from basic definitions in order to capture the
general intuitions about them.

Trust is an agent’s assessment of another party along some dimension of goodness leading to
expected outcomes.
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Trustworthiness is how good a party is in objective terms. In other words, this is a measure
of how worthy the party is to be trusted.

Reputation is the set of general beliefs (among the agents in a society or community) about
a party.

Specifically, Alice may or may not trust Bob for possessing desirable attributes (these could
be capabilities, resources, bandwidth, and such). Alternatively, Alice may or may not trust
Bob for having his preferences aligned with hers or rather for having his preferences aligned
with hers under a particular incentive mechanism. Bob may or may not be worthy of any trust
Alice may place in him. Bob may or may not have a reputation for being trustworthy in the
specified ways. And such a reputation may or may not be well earned.

Reputation and trust therefore can be fit into our dual categorization. Reputation involves
what an agent is, as measured from its past; an agent has a reputation of having some attribute
or capability, and so a reputation system in this sense is a signaling system. Trust is concerned
with what an agent will do in a future situation, which concerns the agent’s preferences and must
be handled by a sanctioning system. However, as trust and reputation have other connotations
in specific domains, such as emotion, we will maintain the distinction using the terms signaling
and sanctioning.

2.1.1 Measuring Influence of Signaling and Sanctioning

Consider agents a and b that have fixed behavior, behaving virtually the same way regardless
of the situation (e.g., by offering products of some specific quality). An example of such an
agent is one that controls a high-volume web service with specific offerings and finite bandwidth
with little autonomy and limited reasoning capabilities. Consider an agent c that is deciding
whether to interact with agent a or agent b. If c chooses a, then c will receive some benefit (or
loss) of utility, ua. If c chooses b, then c’s utility would be changed by ub. Since the agents
have fixed behavior, c’s behavior other than choosing a or b will not make much difference. To
maximize utility, c should use a reputation system (using statistics, for example) to measure
how a and b’s behave before making the decision.

Conversely, consider that agents a and b are rational, have full and precise control over
each of their actions, and may change their behavior without any switching costs. An example
of these agents would be low-volume reseller agents that have a sufficient supply of resources
offering substitutable products or services. In this case, whether c chooses a and b matters little
to c’s utility. Instead, c’s choices in negotiation and behavior with respect to a or b dominates
c’s change in utility. Finding an optimal interaction strategy is how c can maximize its utility,
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and c should use a trust system (game theoretic modeling) to determine its best course of
action.

If we write the benefit some agent c will gain with behavior x when choosing agent a as
ua,x, then the magnitude of the difference of utility change between choosing agents a and b

while c maintains consistent behavior is |ua,x − ub,x|. Using c’s utility maximizing behavior,
this difference can be written as maxx |ua,x − ub,x|. When evaluated against every agent in the
set of agents available for c’s consideration, S, agent c’s maximum difference in utility between
interacting with any two agents, dselection(c), can be written in terms of the rate of interaction
between c and another agent a, ra,c, and the set of all of c’s possible behaviors, H, as

dselection(c) = max
a∈S,b∈S,x∈H

|ra,c · ua,x − rb,c · ub,x|. (2.1)

We may write the maximum utility difference between any two behaviors, dstrategy(c), as

dstrategy(c) = max
a∈S,x∈H,y∈H

|ra,c · ua,x − ra,c · ua,y|. (2.2)

The maximum effect of the choice of either agents and strategies on utility, dtotal(c), can be
expressed by

dtotal(c) = max
a∈S,b∈S,x∈H,y∈H

|ra,c · ua,x − rb,c · ub,y|. (2.3)

As dselection measures the impact of an agent’s type and dstrategy measures the impact of an
agent’s strategy, we can use these values to determine the impact of signaling and sanctioning
on a multiagent interaction relative to the total effect of choice on utility. In aggregation, we
express the average value of each of the values across all agents as dselection, dstrategy, and dtotal.
The fraction of agents’ total utility in a system that can be affected by signaling, isignaling, can
be represented as

isignaling =
dselection

dtotal

. (2.4)

The fraction of utility that can be affected by sanctioning, isanctioning, can be represented as

isanctioning =
dstrategy

dtotal

. (2.5)

The contributions of selection and strategy must account for the total range, thus dtotal ≤
dselection + dstrategy.
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Seller

Refurbish Don't Refurbish

Buy Don't Buy
Buyer

Buy Don't Buy

Keep 0 0Sell at Loss

Figure 2.1: Online auction extended form game.

Seller Agent Refurb. Value Refurb. Market Price Unrefurb. Price Refurb. Cost
A $500 $400 $200 $150
B $490 $350 $250 $80

Table 2.1: Online auction refurbished laptop example data.

2.1.2 Example: Online Auction Representation

We use a simplified online auction interaction to show an example of applying our signaling
versus sanctioning measure. Suppose agents are participating in an online market for refurbished
laptops as depicted by the extended form game in Figure 2.1 with prices outlined in Table 2.1.

Suppose a buyer agent, C, values the refurbished laptop from A at $500 and the refurbished
laptop from B at $490. Agent C needs to decide whether to buy from A or B for the market
price of $400 or $350, respectively. It costs A $150 to refurbish its laptop that it bought
unrefurbished at $200, and costs B $80 to refurbish the laptop it purchased at $250. Both A

and B are claiming that the laptop on sale is refurbished, but C does not know for sure.
First, we investigate the case of selection. Agent C can select to buy from A or B, but A and

B have no choice in the matter because of the online auction format. The rates of interaction
from A’s perspective are rA,A = 0, rA,B = 0, rA,C = 1, and B is analogous. The rates from C’s
perspective are rC,A = 1, rC,B = 1, rC,C = 0.

Agent A only can interact with C, and the maximum profit A could make while still pro-
viding a laptop at the market price of $400 is $200 if it did no refurbishment on the $200
original unrefurbished laptop. Similarly, dselection(B) = $100. To compute dselection(C), we
must first evaluate which strategy yields the greatest difference between choosing A or B.
When the seller performs the refurbishment, C’s difference in utility between choosing seller
A and B is |($500 − $400) − ($490 − $350)| = $40. When the seller does not perform the
refurbishment, the difference becomes |($200 − $400) − ($250 − $350)| = $100. As the rates
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of interaction are symmetric, the larger of these two yields dselection(C) = $100. The av-
erage value of the difference of selection across all three agents is the average expressed as
dselection = ($200 + $100 + $100) /3 ≈ $133.3.

Next we investigate the case of sanctioning for each agent. Agent A can choose whether
or not to refurbish at the cost of $150. Therefore, we find dstrategy(A) = |($400 − $200 −
$150) − ($400 − $200)| = $150, which is the cost of refurbishing the laptop, and accordingly
dstrategy(B) = $80. To find dstrategy(C), we also examine the sellers’ behavior. If A does not
refurbish the laptop before shipping it, but instead delivers a broken laptop, then C regains only
$200 from externally selling the laptop in another market at the unrefurbished price and loses
its $400 payment. Applying this evaluation with both A and B, dstrategy(C) = $300 because
A deciding whether or not to refurbish is the largest difference in values. Putting the three of
these agents’ results together, we obtain
dstrategy = ($150 + $80 + $300) /3 ≈ $176.7.

Despite the multitude of combinations of agents and strategies, finding dtotal is easy for this
example because the problem is small and the extrema are easy to intuitively find. As A and
B do not have a choice in which agents they interact, their values for dtotal are the greater of
dstrategy and dselection. The largest utility gain C can obtain from a transaction is $140 if B
provides a refurbished laptop, and C’s the worst case is if it unknowingly buys a unrefurbished
laptop from A and loses $300. The total difference for C is thus $440, and the average across
all agents is dtotal = ($200 + $100 + $440) /3 ≈ $246.7.

The system has isignaling = $133.3
$246.3 ≈ .54 and isanctioning = $176.7

$246.6 ≈ .68. An effective repu-
tation system for this system should emphasize sanctioning mechanisms slightly over signaling
mechanisms. For agents within this system, these values mean that utilities can be affected
more strongly by what other agents do and the attributes of relations rather than the particular
agents involved in a relation.

2.2 Defining Trustworthiness

To define trustworthiness, we first must have definitions of how agents interact. We define
an event, i, as a pair 〈ui, ti〉 consisting of a change in utility, ui ∈ <, to some agent at a
specified time, ti ∈ <. We define an event as an isolated, independent change in utility, given
all externalities, conditions, and decisions that create the event. An event may have additional
side effects, such as altering the utility of another agent, but as these are not essential to our
discussion and formalisms, we exclude them in our notation and define an event as a pair for
clarity.

We use the following notation. Each agent, a, has a total expected utility function, U , that
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yields the agent’s total utility given its trustworthiness and a set of events of utility changes.
The function may be written more formally as U : Γ × I 7→ <, meaning that the total utility
function takes in a real value of trustworthiness, γa ∈ Γ, and a set of events, I = {i1, i2, . . . in},
and yields a number for the total utility of the events. We write it in the form U(γa, I).

In our running example, an event is a cash flow or an change in ownership or status of a
good. At the time when a seller transfers the ownership of the item to the buyer, the buyer
receives some utility at that time. The utility gain that the buyer receives may be an expected
value if the buyer is planning on reselling the item, perhaps after additional manufacturing or
configuration, for a profit. When the seller receives money for the good or service, the event is
to add money to the seller’s account at the time when the buyer pays.

As in the running example, we restrict our attention to trust with respect to future actions.
This would eliminate some English uses of the word “trust” such as “I trust book reviews on
Amazon,” because there is no future action there. It would allow “I trust Amazon to send me
the book on time,” which involves a future action.

2.2.1 Assumptions

We assume trustworthiness is reasonably fixed for the time frame in which the agents act.
This is reasonable because if trustworthiness changed quickly, for example, if sellers frequently
and unpredictably changed their type, a measure of trustworthiness would not be useful for
predicting outcomes.

This does not mean that trustworthiness is fixed for a given agent. Models in which agents’
types change [Mailath and Samuelson, 2006] are compatible with our approach.

Assumption 1 An agent’s trustworthiness is consistent enough to be meaningful across inter-
actions; recent measurements of an agent’s trustworthiness, if accurate, should usually reflect
the agent’s current trustworthiness.

Assumption 1 merely requires that the rate of change for agent types is sufficiently lower than
the rate of interactions so that knowing another agent’s type is useful in an agent’s decision
model.

Utility theory lies at the core of e-commerce and postulates that agents have valuations for
goods or services. A common currency is obviously desirable for commerce [Willmott et al.,
2002], and enables agents to compare their valuations.

Assumption 2 A utility loss or gain by one agent can be directly compared to the utility loss
or gain of another agent.

Quasilinearity means that the utility gained from isolated independent events is additive
over the range of utilities involved such that an agent’s total utility is closely approximated by
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the sum of all of its utility changes. The property of quasilinearity is frequently assumed in
consumer theory and e-commerce [Walsh and Wellman, 2003].

Assumption 3 Each agent has quasilinear utility; given two events yielding utilities at the
present time of u1 and u2, the agent’s total utility, U , is U = u1 + u2.

Individual rationality means that an agent will not enter into nor fulfill a commitment
unless doing so maximizes the agent’s utility. A buyer will not purchase an item that is greater
than its willingness-to-pay for that item, assuming that willingness-to-pay accounts for any
expected benefits or losses indirectly associated with purchasing the item, such as when an
otherwise unnecessary purchase is made to improve a relationship. Individual rationality is a
core foundation of autonomous agents in much of the e-commerce literature [Wellman, 1996].

Assumption 4 Agents are individually rational.

2.2.2 Intuitions about Trustworthiness

Trustworthiness inherently involves settings where agents directly or indirectly engage in be-
havior that affects each others’ utilities. The concept of a commitment helps capture this
relationship. A debtor (agent) commits to a creditor (agent) to bring about an event [Singh,
1999]. In essence, a commitment reflects a dependence of the creditor on the debtor.

Definition 2 C(b, a, i) is a commitment from debtor b to creditor a that b will bring about an
event i at time ti yielding a positive utility to a and a negative utility, ui, to b.

We restrict attention to commitments that require a negative utility for the debtor simply
because commitments that yield positive utility to all parties with no risks does not require trust
in our sense. In other words, we seek to capture the intuition about a debtor’s trustworthiness
based on the troubles it will go through to fulfill its commitments.

Often, in e-commerce, commitments would occur in complementary pairs so the overall
situation would be win-win. For example, when a buyer commits to paying a seller and the seller
to providing goods to the buyer, both benefit from the transaction. Indeed, given individual
rationality (Assumption 4), every commitment that an agent enters must entail the expectation
of a complementary commitment, such that the expected sum of the utilities is positive. Agent
a may have beliefs as to how it will be repaid, such as having a 50% chance of b deciding on
event i and a 50% chance of b deciding on event i′. When evaluating its total utility function,
a should evaluate this as the expected value U(γa,i)+U(γa,i′)

2 , which holds due to Assumption 3.
The success or failure of a commitment provides a basis for the creditor to measure the

trustworthiness of the debtor. For example, b may commit to deliver an item of a specified
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Strength Comparison Stability

Figure 2.2: Illustration of intuitions about trustworthiness.

quality to a. If b fulfills a commitment C(b, a, i), a neutrally or positively updates its view of
the relationship between a and b. If b fails to fulfill this commitment, a negatively updates its
view of the relationship between a and b.

We now motivate some key intuitions regarding trustworthiness, which we then combine in
our proposed definition of trustworthiness. Figure 2.2 illustrates the intuitions except scalar.
Scalar. Representing trustworthiness as a single value in a given context is a natural conven-
tion. One may ask, “How much do you trust b to produce and deliver some item with quality of
at least X?” and receive a reply of “a lot.” Such a value can be quantified; many online services
provide ratings as points or percent of customers satisfied. A scalar representation does not
preclude an agent from holding additional beliefs of the value or accuracy of trustworthiness,
such as a probability distribution, nor from requiring additional information when making a
decision of whether to trust, such as how much the trustee values something. Further, we can
use different scalars for each context. More formally, we say that the set of trustworthiness
values is the set of real numbers, Γ = <.
Comparison. A trustor a can compare two trustees b and c. Specifically, a considers b
more trustworthy than c if, all else equal, b would be willing to suffer a greater utility loss than
c would to fulfill the same commitment to a. In essence, a must know something about the
valuations and costs incurred by both b and c and be able to compare these values as supported
by Assumption 2. This does not mean that a will receive more utility from b’s commitment
than c’s commitment, only that b is fulfilling a more costly commitment. Formally, agent a
would consider agent b more trustworthy than agent c if, all else equal, for some event i with
positive utility to a, there exist commitments Cb = C(b, a, i) and Cc = C(c, a, i) such that b
would fulfill Cb and c would not fulfill Cc.

If c does not fulfill its commitments to a, by our definitions, this necessarily entails the loss
of expected utility by a. If a pays c to deliver an item at a specified quality and c fails to deliver
the item or provides an item of low quality, a will have gained less utility than it expected and
incurred a negative net utility. This decrease in net utility causes strain on the relationship,
causing a to either retaliate against c, such as by posting negative comments about c causing
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other agents to avoid transactions with c, or to avoid future loss by reducing its involvement
with c by not making further purchases from c. In either case, c will initially have greater utility
from incurring less cost by providing a lower quality item, but possibly lose more utility over
the long term.
Strength. The behavior of each agent is internally consistent. Given equal impact on a
relationship, if an agent is willing to do something difficult to keep a commitment, it should be
willing to do something easy. If an agent is willing to deliver 1,000 gallons of kerosene to fulfill
a commitment, then the agent should be willing to deliver 600 gallons of kerosene if everything
else in the overall commitment stays the same (provided that storing or disposing of the other
400 gallons is not more difficult or costly than delivering it). From the perspective of the debtor,
this property does not require actual fulfillment, it only requires that the agent be willing to
exert the effort (sacrifice utility). If an item arrives late due to extenuating circumstances, this
does not mean that the seller is necessarily less trustworthy. However, the creditor may only
lessen its negative interpretation of an unfulfilled commitment if the creditor has some belief of
noise in the signal of whether commitments are fulfilled. Formally, consider events i, j where
ui ≤ uj and agents a, b. If b fulfills C(b, a, i) then b fulfills C(b, a, j).
Stability. The idea of stability is that agents should tend to behave in a manner that re-
flects a consistent underlying level of trustworthiness, which stems from Assumption 1. This
essentially means that an agent, at the present time, considers its trustworthiness to be con-
sistent for modeling future interactions. Using our online market example, an agent should
be approximately equally trustworthy if a commitment will be set up now or one month from
now, presuming the agent and market remain constant with regard to price, demand, supply,
reputations, and reliability of available information. For example, suppose a firm can be trusted
now to successfully deliver an order of 20 microphones of a certain quality within two weeks of
payment. Then, if all else (e.g., external prices, internal staffing, and such) remains consistent,
the firm can be trusted to deliver the same order if it were placed several months later again
within two weeks of payment. Suppose the same firm is indifferent to committing to a delivery
of 20 microphones and a delivery of 5 speakers today. If again, the environment and agents’
valuations stay the same, the firm should be indifferent to those two commitments if asked
again in a month. More formally, if an agent is indifferent between two commitments or sets of
events, I1 and I2, then it should also be indifferent if the time is shifted by some arbitrary s.
This may be expressed as

U(γ, I1) = U(γ, I2) ⇒ U(γ, {〈ui, ti + s〉 : i ∈ I1}) = U(γ, {〈ui, ti + s〉 : i ∈ I2}). (2.6)
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Stability means that an agent should tend to behave in a similar manner across a period of
time, but this does not mean that an agent is indifferent between when an event or commitment
may happen. An agent may prefer to receive an item sooner rather than later. We are simply
stating that, given identical circumstances, an agent would enter the same commitments if they
were shifted by some time because the agent is stable. If properties of the environment, agents’
valuations, or agents’ trustworthiness change, the agents may model such changes and factor
them into their decision making however appropriate.

Definition 3 The trustworthiness of agent b from a’s perspective is a scalar value that a be-
lieves to be an accurate projection of an b’s attributes that a can use to compare b to other
agents (comparison) with respect to the utility that b would be willing to sacrifice to fulfill a
commitment to a (strength), that is also relatively stable across time (stability).

2.3 Trustworthiness and Discount Factor Isomorphism

We now derive our main result: an agent’s discount factor is a direct measure of its trustwor-
thiness given assumptions.

Because previous changes of utility are accounted for in an agent’s current utility, it is only
useful to evaluate the impact of future changes to utility. We therefore restrict the domain of
ti to [0,∞).

Theorem 1 Given commitment as in Definition 2, trustworthiness as in Definition 3, and
Assumptions 1, 2, 3, and 4, the representation of trustworthiness satisfying these definitions is
isomorphic to an intertemporal discount factor.

Proof 1 By Definition 2, the utilities of any two events i and j are independent. This defi-
nition, coupled with Assumption 3 of quasilinearity, implies that an agent’s total utility, U , is
a summation of some utility function for each event, f , over all of the events, with ∂f

∂ui
> 0.

With trustworthiness γ and the set of events I, this is given by

U(γ, I) =
∑
i∈I

f(γ, ui, ti), (2.7)

Given comparison (supported by Assumption 2) and strength, an agent, b, is considered
more trustworthy than another, c, if b will fulfill a commitment requiring a larger expenditure
than c. This implies there is a commitment of some cost that b will fulfill and c will not; below
this cost, both agents would fulfill the commitment. We only need to examine an individual
event, and can restate this property using the event utility function, f .
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Let us evaluate agents b and c with trustworthiness γb and γc, respectively. Let agent a
expect a commitment, 〈u1, t1〉, to be fulfilled by the agent in question where, by Definition 2,
u1 < 0. Further, suppose that if the commitment is fulfilled, a will provide some utility back
to the respective agent in the continued relationship: as Section 2.2.2 explains, at least two
complementary commitments are required for agents to enter into commitments. We examine
the simplest case, where this returned utility is expressed by a single event, 〈u2, t2〉, such that
u2 > 0 and t2 > t1.

From Assumption 4, f(γ, u1, t1) + f(γ, u2, t2) > 0 for b and c; otherwise the relationship
is destructive and rational agents would not engage in the commitments. Suppose b chooses
to fulfill its commitment and c chooses to not fulfill its commitment. Their decisions show
U(γb, {〈u1, t1〉, 〈u2, t2〉}) > U(γb, ∅) and U(γc, {〈u1, t1〉, 〈u2, t2〉}) ≤ U(γc, ∅). If no events occur
to change an agent’s future utility, the agent’s utility does not change, so U(γb, ∅) = U(γc, ∅) =
0. This implies, given the above assumptions of the two-event interaction set, that

U(γb, {〈u1, t1〉, 〈u2, t2〉}) > U(γc, {〈u1, t1〉, 〈u2, t2〉}). (2.8)

Because b fulfilled a commitment that was larger than c would fulfill, by comparison and
strength, b is more trustworthy than c. If b is more trustworthy than c, then its trustwor-
thiness value is higher, meaning γb > γc. We can take the limit as (γb − γc) → 0, to find
that

∂U

∂γ
≥ 0 (2.9)

holds in this scenario with two events. This means that more trustworthy agents, when their
trustworthiness is known to each other, attain higher expected utility than untrustworthy agents
in two-event scenarios, all else being equal.

Stability, supported by Assumption 1, entails that agents are consistent in their trustwor-
thiness. The outer operation of U in (2.6) is a summation, and the number of terms in each
summation (the number of events in each set of events) are not necessarily equal. Therefore,
the only two possibilities that allow both equalities to hold are that time has no effect on events’
utilities or that a change in time results in a constant multiplicative factor across all terms in
a summation independent of the utilities.

First, we consider the case where a change in time results in a constant multiplicative factor.
The event utility function f must contain a multiplicand of the form xt. This is because, given
x ≥ 0, xt exhibits the appropriate behavior of xt+s = xs ·xt with xs being constant for a constant
time s. The first case, where time has no effect on f , can be represented by the second case
with x = 1.

At this point, x remains an undefined attribute that affects the utility evaluation. Supposing
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x did not affect the trustworthiness of an agent, if b is more trustworthy than c, then (2.8)
must hold. Setting x = 0 for agent b would violate this inequality. As this contradicts the
assumption that x cannot affect the trustworthiness of the agent, x therefore directly affects the
trustworthiness of an agent.

Given scalar, only one attribute may affect the trustworthiness of an agent. We now check
to make sure that x satisfies the constraints of γ. In the two-event scenario, when U > 0 as
given by Assumption 4, ∂U

∂x = t1u1x
t1−1 + t2u2x

t2−1. Because x ≥ 0, t2 ≥ t1, u1 < 0, u2 > 0,
and U = u1x

t1 + u2x
t2 > 0, we can solve U for u2 > −u1x

t1−t2, and substitute the infimum
of u2 in this expression (and any greater number) into the expression for ∂U

∂x to find ∂U
∂x ≥ 0.

This satisfies (2.9), thus satisfying strength and comparison (x came out of a derivation of
stability).

Substituting γ for x and rewriting in the form of (2.7), we find U(γ, I) =
∑

i∈I γ
tiui.

Revisiting (2.9), ∂U
∂γ =

∑
i∈I ti · γti−1ui. To prevent imaginary terms for events with ti < 1, the

constraint of γ ≥ 0 is required. This final utility equation coupled with the domain of γ is, by
Definition 1, exponential intertemporal discounting.

2.4 Desiderata for Trust Systems

Devising optimal designs of general-sum multiplayer games is a difficult and domain-dependent
problem. However, general desiderata can help guide interaction design. Such desiderata include
individual rationality, guarantee of attaining a minimum payoff, guarantee of payoff to be within
some ε within a best response strategy, and Pareto optimality when an agent is playing against
its own strategy [Vu et al., 2006]. However, the desiderata for trust and reputation systems
are not quite as straightforward [Dingledine et al., 2000] because trust and reputation are
supplemental to primary interaction mechanisms. A primary interaction mechanism is one,
such as a market, that affects agents’ utilities directly.

A key motivation for work on trust is that the primary interaction mechanism is not incentive
compatible (IC). Were it so, the agents would act honestly out of self interest. Our desiderata
not only apply well when the primary mechanism is not IC, but also work when it is IC. Incentive
compatibility is highly desirable for mechanism design, but achieving incentive compatibility
may not be computationally feasible [Conitzer and Sandholm, 2004]. Further, an IC mechanism
may not be in the best interest of the agent or firm running the mechanism, because an IC
mechanism may not maximize profit.

Many papers on trust propose desiderata [Huynh et al., 2006, Kamvar et al., 2003, Ramchurn
et al., 2004, Teacy et al., 2006, Zacharia and Maes, 2000]. Dingledine et al.’s [2000] desiderata
list is the only comprehensive one we have found, but even their desiderata list focuses on
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aspects that are specific to certain kinds of reputation systems. We now propose desiderata
that apply even when no central authority is available to enforce interactions or sanctions, and
which focus on top-level goals that directly benefit the agents or system. A desirable system
must be:
Evidential. An agent should use evidence-based trustworthiness measurements to predict
future behavior. This is the essence of a trust system, with an agent rationally assessing
others’ behavior and acting upon its knowledge. Evidence also includes temporal relevance;
new evidence that an agent has successfully changed its type, if credible, should indicate to
another agent that old evidence may no longer be relevant. In the online market example,
an agent should measure trustworthiness in a quantifiable and repeatable manner based on
the quality of goods and timeliness of their offers, to determine how to best engage in future
interactions.
Aggregable. Trustworthiness measurements should be accurate, precise, and possible to
aggregate. This is key because aggregation enables an agent to communicate about trust-
worthiness and to put together indirect information obtained from other agents to increase
knowledge of other agents’ trustworthiness. In the market model, this aggregation involves
reading others’ comments, albeit with skepticism, to maximize the information considered.
Viable. The system should be practical in its computation and communication requirements.
An approach that requires an exponentially large number of messages among buyers and sellers
or requires each agent to perform an NP-Hard computation on a large dataset would not be
tractable.
Robust. Measurements should be robust against manipulation; agents may signal or sanc-
tion to determine which agents are of what type and to resist strategic manipulation of the
measurements. Manipulation can come in many forms, such as building up a reputation and
then spending it, opening many pseudonymous accounts to communicate an inflated reputation
to legitimate agents (Sybil attack), and opening a new account to expunge a bad reputation.
We do not assume an incentive compatible reputation mechanism [Jurca and Faltings, 2007].
IC would be ideal for robustness, but can be impractical in some problem domains, either
because of computational or communicational complexity conflicting with viability, or be-
cause of unenforceability if agents can deviate from the specified mechanism without credible
consequences.
Flexible. Trustworthiness should be applicable across multiple situations within the same
context. Trustworthiness measurements should carry over across products, services, and even
interaction mechanisms. Suppose a seller is running a web service from which buyers can
purchase directly, but also sells some of its items in a simultaneous ascending auction run by a
third party. A buyer should be able to carry over knowledge of trustworthiness about the seller
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from direct sales to infer information about the quality of the items sold on the third party’s
auction and vice versa, even though the mechanisms are different. If a buyer becomes a seller,
its reputation as a buyer should be indicative of its behavior as a seller, provided other agents
can infer some knowledge of valuations, capabilities, and beliefs in the new domain.
Privacy enhancing. The system should maximize agents’ privacy by minimizing the col-
lection of information. The implications on a system can be quite broad. We use privacy in
this sense to indicate that the public exposition of an agent’s attributes is minimized. We
differentiate privacy from anonymity. Anonymity is the antithesis of reputation; an agent must
be (at least pseudonymously) identifiable in order for others to learn about its trustworthi-
ness. Privacy can prevent an agent’s identity outside of the system from being known. Thus
maximal privacy would reduce the burden of an agent entering or leaving the system. This
is because some cost is incurred by an agent divulging its identity in the system, such as the
opportunity cost of preventing the agent from assuming a new identity within the system when
its reputation is bad. Less privacy can also imply that the agent has some external account or
information that the system could use to sanction it. In this sense, privacy acts as a liability
limitation much in the way that a firm partially disassociates liability from its employees. The
benefits of privacy are that agents have reduced friction of entering and leaving the system.
The drawbacks include 1) a possible influx of unfavorably typed agents and 2) agents with bad
reputations reverting to a neutral reputation. Both drawbacks are dependent on how other
agents measure and handle trustworthiness.

2.4.1 Existing Trust Systems

Yu et al. [2004] provide a method for discovering peers and communicating reputations that
maintains accuracy against noisy ratings and malicious peers. However, Yu et al.’s mechanism
is weak against robustness because it measures other agent’s quality of service (QoS) and
only requires that the aggregate QoS be above a certain threshold. This creates a moral hazard
wherein strategic agents will maintain reputations just above the threshold. Their mechanism
does not meet flexibility well, because it is not clear how to weight and aggregate QoS across
domains of interaction.

Teacy et al. [2006], Jøsang [1998], and Huynh et al. [2006] present methods of aggregating
trustworthiness from peers that can account for uncertainty. Kamvar et al. [2003] propose a
self-policing peer-to-peer reputation system that is highly distributed. Like the work of Yu et
al. above, the trust measurements and communications of these three works take into account
neither the possibility of different domains nor of different utilities involved, thus violating
flexibility. For example, their methods do not account for whether an agent is trustworthy
enough to deliver a single order of a million items if the agent was known previously to be

32



trustworthy to deliver one item. Similarly, these methods assume agents have a specific type and
always perform the same actions, at least on a probabilistic basis, regardless of the other agents
and situations involved, thus violating robustness. Such an assumption can be reasonable
when one agent is interacting with many anonymous agents, such as a company selling a
particular brand of food, but often do not hold under nonanonymity when the agents are
rational and fewer, or can precisely control their interactions with others.

Zacharia and Maes’ [2000] mechanism seeks to achieve low-level behavioral goals, such as
enabling agents with higher reputations to have more influence on others’ beliefs. However,
their subjective trustworthiness measures only weakly achieve aggregability. Like the afore-
mentioned trust and reputation systems, their measures are highly specific to the interaction
domain, which does not meet flexibility. Zacharia and Maes tested their system only against
malicious agents that build up reputation and then spend it, and do not examine strategic
agents, so we are unable to assess how well their system meets robustness.

Saha et al. [2003] support evidentiality, because their method uses agents’ reputations
to directly evaluate the future expectations of utility that would be achieved by each possible
interaction. However, their method does not meet aggregability because agents cannot
aggregate information from sources other than their own interactions. Saha et al.’s method
is also potentially weak against robustness if agents can easily change identities and exploit
favors offered to unknown agents. Further, their method does not meet viability because
agents cannot communicate their knowledge.

Resnick and Sami [2007] focus on preventing various types of reputation manipulations, sup-
porting robustness. Whereas their model appears to meet most of the rest of the desiderata,
their model discards potentially useful information, partially conflicting with aggregable.
This is particularly limiting in the case when information on a particular product or agent can
change, and the system is slow to adapt because of the sudden increase in information entropy.

2.4.2 Discount Factor and Desiderata

Using an agent’s discount factor as its trustworthiness meets evidentiality, because each
agent can measure others’ discount factors and apply them in a direct manner to evaluate its
optimal strategy.

Discount factor measurements meet aggregability because they can be combined to
increase accuracy and precision. The measurements consist of a range or PDF of another
agent’s discount factor, and can be combined via probability theory to yield further accuracy
[Hazard, 2008]. The only difficulty with discount factor measurements is that the measuring
agent must account for its best understanding of what the measured agent is experiencing, and
must account for the measured agent’s best response. Computing the best responses to find the
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Bayes-Nash equilibria can be a hard computational problem [Conitzer and Sandholm, 2004].
In our model, we have found the computational complexity of some discount measurements
to be relatively simple or readily approximable, such as when sellers are slowly dropping their
prices in a market with more demand than supply. However, in other situations, such as when
an agent is aggregating and deciding the validity of many conflicting reports about one agent
from other agents, the computational complexity may be high, yielding a potential conflict
with computational efficiency in viability. Further study is required to find the computational
complexity for computing other agents’ discount factors in various interactions and to determine
whether efficient algorithms exist.

In general, agents would not demonstrate a discount factor lower than their actual unless
they are competing with others for limited resources. Agents have difficulty credibly demon-
strating discount factors above their own because their impatience prevents them from waiting
for the postponed, larger utility. For these reasons, discount factors as trustworthiness mea-
sures are aligned with robustness. Further, discount factors are strongly influential in many
different domains and situations, such as an agents’ desire for quality, the rate at which sell-
ers drop their prices, and how quickly agents come to an agreement in negotiation, discount
factors. Whereas the exact method of measuring discount factors changes with the role and
situation, discount factors as trustworthiness can maintain their strengths with other desiderata
across these domains, regardless of domain-specific valuations and capabilities, thus satisfying
flexibility.

Discount factors’ ability to cope with an open system facilitate privacy enhancing in the
sense that they offer a low barrier to entry and generally do not require external information
to be revealed. If one agent knows nothing about another agent, the maximum entropy distri-
bution of the other agent’s discount factor is a uniform distribution on [0, 1), which offers some
protection against unknown agents as the expected discount factor is 1

2 . If an agent has a priori
knowledge of the distribution of discount factors of agents to be encountered, it may use that
distribution instead. If unfavorably typed agents repeatedly assume new identities to expunge
poor reputations, or attempt to open a large number of pseudonymous accounts to bolster their
own reputation (Sybil attacks), then an a priori distribution can be sufficiently pessimistic in
a new agent’s discount factor at the expense of how quickly an agent can recognize a new but
favorably typed agent. Using discount factors as trustworthiness does not prevent implementa-
tions from requiring agents to reveal valuation information, and agents may have some ability
to evaluate others’ valuations. Therefore, discount factors do not maximize this desideratum,
but do not directly violate it.
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2.5 Discussion

Trustworthiness is objective because it means how deserving or worthy an agent is of trust. Of
the properties of trust we introduced, scalar is merely a convention. Strength and stability are
absolute aspects in that they pertain to an agent in itself, whereas comparison is relative in
that it pertains to an agent in reference to other agents. Notice that even comparison indicates
an objective measure, because it compares the trustworthiness of trustees from the perspective
of a rational trustor.

Agents with low measured discount factors behave in ways that are generally considered
untrustworthy. An agent with a low discount factor would produce poor quality items, exert
low effort on service tasks, and not offer or return favors. In each case, the agent will prefer
smaller utility gain now to a larger gain in the future. If an agent a with a low discount factor
were entrusted with a secret by agent b, perhaps for mutual benefit, a would not have a strong
incentive to keep the secret. Agent a would not put much value on its future relationship with
b, and would reveal the secret to some third agent, c, if agent c offered a little short term gain.
Having a low discount factor means an agent is myopic and impatient. Under our definitions
and assumptions, trustworthiness is therefore roughly equated to patience.

Agents with high measured discount factors often behave in a trustworthy manner. However,
the way discount factors as trustworthiness can depart from intuition is when an agent with a
high discount factor faces a moral hazard where it does not expect sanctioning to be effective.
The agent with the high discount factor would not necessarily be honest when it is not being
observed. It is possible for an agent that steals items from other agents to have a high discount
factor if the agent believes that the probability of being caught or the utility loss due to
punishment will be sufficiently low. One scenario is the agent’s beliefs are wrong and other
agents observe the undesirable behavior, attributing the behavior to lower valuations or a
lower discount factor. Conversely, if the agent’s beliefs are accurate and other agents cannot
differentiate an agent that is always altruistic (strongly typed) from an agent that is only
altruistic when observed (purely utility maximizing), then no objective trust system could
measure this.

The discount factor method requires each agent to model another agent’s valuations in ad-
dition to its trustworthiness. This model affords the first agent an analytically predictive model
of the second. Almost any trust model can be tailored to different domains and contexts, such
as automobile repair and cooking. However, discount factors can model a single trustworthiness
value across the domains, as long as sufficient information is available about the agent’s valu-
ations and capabilities (as defined by the value an agent will receive from another’s action) in
the different domains. This means even if an agent repairs automobiles well but cooks poorly,
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its trustworthiness can be consistent across the domains as long as the contexts are equivalent
and the agent’s valuations and beliefs can be modeled. Even if information is scarce, agents can
have mutual information about the information scarcity and attribute nontrusting behaviors to
the scarcity of information.

Using its expectation of another agent’s valuations in decision models helps an agent evaluate
the trustworthiness of agents in complex situations. Suppose b regularly purchases cheap office
supplies from s, and always finds them to be of good quality. In this context, s is trustworthy.
Because the profit margins on the items are small, b is only able to know that, for example,
γs > 0.9. Now suppose a is looking to buy an expensive office chair. The discount factor that
b reports may not indicate that s will sell a high-quality office chair in the different setting,
depending on the possible profits. If s focuses on office supplies, it may not have the economies
of scale to make larger profits on high-quality office chairs, increasing the incentive to provide
one of low quality. Note that discount factors coupled with valuations also can work in the
reverse; a supplier of expensive niche items may not be able to efficiently offer cheap bulk
goods, and may not experience much sanctioning if it were to provide poor quality goods to an
unknown single-transaction customer.

Agents’ discount factors may change along with Assumption 1 due to various reasons. Ex-
ternal factors include a change in the market or the agent’s ownership, and internal factors
include an agent deciding to leave a given market at a specified future date.

Practical examples of multiagent interactions involving many individuals, firms, and other
organizations can exhibit a range of behaviors, including agents that act strategically, agents
that behave in a consistent manner directed by a rigid set of beliefs, and agents that fall between
the extremes. Discount factors offer a measurement of trustworthiness that is applicable to the
range of agent behavior where both adverse selection and moral hazards exist.
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Chapter 3

Favor Reciprocation With Private

Discounting

3.1 Introduction

People and organizations routinely perform favors in a variety of settings built on norms, em-
pathy, and trust. However, a self-interested agent acting on behalf of a person, organization, or
itself, only has whatever intrinsic empathy and trust towards others with which it was designed.
In many situations, the optimal outcome is sought by agents exchanging resources and services.

While market-based resource allocation is often an effective tool for social optimization [Well-
man, 1996, Golle et al., 2001], markets may not be effective with self-interested agents without
common currency, sufficient liquidity, means transferring resources, or effective methods to en-
force a fiat currency. In such cases, agents can reciprocally perform favors instead of using
markets to improve their own welfare and thus improve social welfare, albeit with generally
less efficient outcomes. Agents that can trust one another to reciprocate favors to form a gift
economy will have a better ability to smooth out inefficient allocations over time.

Many environments lend themselves to such favor-based interactions. One widely studied
example is peer-to-peer file sharing as a decentralized means of distributing data and soft-
ware [Kamvar et al., 2003, Banerjee et al., 2005]. Complex tasks in multi-robot systems often
require coordination to increase utility [Gerkey and Matarić, 2002]. Favor-based mechanisms
are particularly useful in situations where robots are self-interested but do not have resources
to enforce trade. In business-to-business settings, agents involved in procurement can decide
whether to put forth extra effort to deliver goods or services exceeding the contract when the
customer is in need to foster the relationship for reciprocatively beneficial behavior. Personal
assistant agents may engage in similar interactions, such as transferring reservations that offer
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more utility to a recipient who has a history of positive reciprocations. Gift economies may
also be used to augment market-based transactions to circumvent market friction, such as a
burdensome taxation system, or to increase the risk of switching to another provider with an
unknown reputation.

In this chapter, we build a simple but applicable favor-based interaction model in which
agents attempt to maximize their own utility based on their discount factor and what they
expect to gain in the future. We employ the commonly used exponential discounting, net
present value, although other decreasing discount models may be substituted. In our model,
agents interact via a stochastic process, and can only choose whether to reduce their own
utility in order to increase that of another. Our model exhibits individual rationality (expected
positive utility by participating in the game) and in most cases attracts agents to approximate
incentive compatibility (optimal strategy is to perform honestly).

We begin by presenting related work, followed by our stochastic interaction model, and
then present our adaptive reputation method, which we then use to construct our primary
result: a reciprocity general strategy that works in stochastic environments. We investigate how
agent communication impacts the model and evaluate the strategies via simulation. We find
analytically and experimentally that agents with discount factors that allow them to retaliate
the most effectively in a tit-for-tat style equilibrium achieve the highest utility, which are not
always the most patient agents. Finally, we draw some conclusions from our analysis and
simulations about how communication affects agents’ behavior in our model.

3.2 Related Work

Our work is similar to Sen’s work [Saha et al., 2003, Sen, 2002] in that we build a reciprocity
model on future expectations, but we allow for the discovery of private discount factors, ob-
serve possible ranges of responses rather than point values, and do not use randomization to
communicate signals. Our model also resembles that of Buragohain et al. [2003] in the way we
are using incentives to build trust in an environment with favors, but the primary differences
are that their model has continuous interaction and does not deal with discount factors.

Many others have proposed various methods of quantifying and communicating reputation
and trust. Sierra and Debenham [2005] describe an information theoretic model of trust where
more information yields less uncertainty in decision making. Because they use ordinal prefer-
ences instead of utility, their model works well only if all items being negotiated about are of
sufficient and comparable worth. Teacy et al. [2006] use a beta distributions to model positive
and negative interactions, but do not take into account the magnitude of the interaction nor
strategic behavior from agents. Along similar lines of trust measurement, Yu and Singh [2002]
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use Dempster-Shafer theory, which represents belief and plausibility in probabilistic terms, to
model trust and reputation. However, like the work of Teacy et al. and Sierra and Debenham,
this model does not deal with strategic behavior nor interactions of different ranges of utility,
potentially leaving agents’ utility unprotected against a strategic agent.

Hermoso et al. [2007] investigate the relationship between trust and organizations. While
their trust metrics are somewhat ambiguous, their models are capable of handling an agent’s
varying reliability across different roles. Our model focuses on strengthening the rigor of trust
measurements, but does not yet account for reliability across different roles.

Ramchurn et al. [2006] develop a finite-horizon negotiation mechanism based on repeated
games. Because the agents are negotiating about the near future, their differing discount
factors are implicitly accounted for in the negotiations, resembling the effects of our model.
However, their model does not deal with agents that break promises, and thus needs exogenous
enforcement.

Azoulay-Schwartz and Kraus [2004] present a favor reciprocity model of information ex-
change and use a punishing trigger strategy with forgivement. While their method of inter-
action and mechanisms resemble ours, they assume that discount factors are public and their
punishment mechanism does not account for the effect on the opposing agent in relation to the
cost of the punishment.

While explicitly dealing with the desiderata of incentive compatibility and individual ratio-
nality are generally considered important in game theory and auction literature, dealing with
strategic behavior is more rare in the trust and reputation literature. Jurca and Faltings [2007]
develop an exchange model where the client can sanction the provider if a refund is not given for
a bad interaction. Their model achieves similar goals to ours, except that their model is built
on a more complex refund-based interaction rather than simple reciprocity, and their model as-
sumes discount factors are publicly known. While our model does not exhibit perfect incentive
compatibility, we are able to leverage approximate incentive compatibility in equilibrium as an
attractor to gain accuracy in modeling private discount factors.

3.3 Favor Model

In our favor model, each agent a ∈ A encounters other agents in pair-wise interactions with two
roles: offering a favor and asking a favor. Each round, agents are paired with other agent and
possibly given a chance to act in both roles, depending on a stochastic process. The probability
that agent a1 encounters agent a2 in the round as offer and ask roles, respectively, is ra1→a2 ;
this is the rate of interaction. Similarly, the probability that a1 encounters a2 as ask and offer
roles is ra2→a1 .
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When agents encounter one another, they play a game, Γ, chosen randomly from the set of
possible game parameterizations, G, as follows. The agent in the ask role knows its willingness-
to-pay for a particular favor, wΓ, and asks the other agent for the favor. While the asking
agent could choose not to ask for the favor, the strategy of asking a favor always dominates not
asking the favor because asking incurs no cost, reveals nothing to the opponent, and the asker
will either receive a favor or gain information about the other agent. When the asking agent
asks for the favor, the cost of the offering agent to perform the favor, cΓ, is revealed to both
agents. The agent in the offering role then decides whether to provide the favor, P , or to reject
the request, R. The values of cΓ and wΓ are drawn from the public, non-negative distributions
of the random variables C and W respectively. Each agent may have a unique distribution,
but we assume they all share the same distribution for clarity. For brevity, we will drop the Γ
subscript for c and w when the subscript is obvious or irrelevant.

Each agent’s type is comprised of its discount factor, previous observations of interactions
with other agents, and information acquired from communication with other agents. As these
attributes of an agent’s type are private, agents must analyze other agent’s actions and strategize
about information revelation in order to maximize utility.

This repeated game has the obvious Nash equilibrium of offering agents always playing R.
Given sufficient discount factors, the repeated game also has the multitude of Nash equilibria
of trigger strategies, that is, playing some sequence of P and R but playing permanently R if
the sequence is ever broken by either agent. However, more interesting equilibria and behaviors
emerge when reputation is taken into account. An agent has no direct control over gains of its
own utility, and is thus subject to the actions of other agents.

In order to deal with agents’ changing preferences over time, we discount agents’ histories by
using a replacement process for the agents. When a replacement occurs, an agent is effectively
removed and replaced with a new agent; its discount factor is redrawn from the distribution of
discount factors. The agent’s observations and information of other agents may be cleared when
it is replaced. Agent replacements have been shown to be an effective tool for modeling how
agents change over time [Mailath and Samuelson, 2006]. This replacement process forces agents
to focus on recent observations more than old observations and allows agents to change over
time. An agent’s replacement rate is the expected number of replacements that the agent will
undergo per unit time. We will denote agent a’s replacement rate as λa, and use a Bernoulli
process for replacement. Replacements can be justified by a change in the market, agent’s
ownership, information, or other factors in a dynamic environment. For the model to be
meaningful to real-world scenarios, the replacement rate should be sufficiently low for reputation
to be significant.
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3.3.1 Strategies With Known Discount Factors

As an agent’s discount factor increases, its willingness to give favors to other agents in return
for greater reward later increases. An agent with a high discount factor therefore would desire
a mechanism that rewards its patience and prevents other agents with lower discount factors
from taking advantage of it. Under such a mechanism, agents will reciprocate favors according
to discount factors of their own and of the opposite player.

Suppose agents a1 and a2 are exchanging favors, where a1 is offering all favors to a2 that
cost a1 less than a1’s current maximal favor offering, ca1→a2 . Agent a1 would choose which
favors to perform, and also control its cost, by adjusting ca1→a2 . We can think of the value
ca1→a2 as how much a1 trusts a2 to repay the favors. Similarly, a2 is offering a1 all favors that
cost a2 less than ca2→a1 . As the only positive payoff to a1 is controlled by a2 and a1 incurs cost
for providing favors to a2, a1 has a direct incentive to reduce its costs by refusing to provide
favors. When a1 is playing in an offer role in game Γ, we can thus write a1’s expected total
future utility, Ua1 , of interacting with a2 discounted by γa1 for each time step, t, given the cost
of the current favor cΓ as

Ua1 =
∞∑

t=1

γt
a1
ra2→a1PE(W |C < ca2→a1) − cΓ −

∞∑
t=1

γt
a1
ra1→a2PE(C|C < ca1→a2) . (3.1)

We define the shorthand notation PE(Y |X) ≡ P (X) · E(Y |X) with P (X) being the proba-
bility of event X occurring and E(Y |X) is the expected value of Y given that X occurred.
Equation 3.1 may be easily extended to a total utility by a summation over all agents.

One primary criterion of an effective interaction mechanism is individual rationality, that
is, an agent a1 will expect to gain utility by participating, expressed formally as Ua1 > 0. If an
a1 will not expect to gain from a relationship of exchanging favors, the agent will not enter the
relationship, setting ca1→a2 = 0. By applying this principle to a given pair of agents, we can
find the maximum c for which each agent would be willing to provide a favor to the other while
keeping the utility non-negative. We can find these values by simply setting Ua1 = Ua2 = 0,
setting cΓ to the corresponding c that the agent pays out in each equation, and solving to find
ca1→a2 and ca2→a1 .

1 By assuming the worst case of cΓ = c for each agent, all smaller values of
cΓ will yield positive expected utility and thus meet the criterion of individual rationality.

Our favor model exhibits a moral hazard, that is, each agent can directly increase its utility
by reducing its corresponding c. For many parameterizations, our favor model is closely related
to the repeated prisoner’s dilemma; the Pareto efficient outcome, ∀a, a′ ∈ A : ca→a′ = ∞, is

1An agent a could also have some minimum utility threshold, ka > 0, which it must receive in expected utility
gain in order for it to participate, particularly if a relationship requires some opportunity cost, overhead cost, or
communication to simply maintain. In this case, Ua = ka would be solved instead.
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not necessarily a Nash equilibrium because agents have incentive to defect from this strategy.
However, Pareto efficient outcomes can be achieved as a subgame-perfect Nash equilibrium
if agents can credibly punish others for not offering favors. One such example is the grim
trigger strategy, where agent a permanently sets ca→a′ = 0 if agent a′ does not offer a favor.
If significantly many agents use the grim trigger, then agents with sufficiently large discount
factors are reluctant to ever not offer a favor, bringing about the Pareto efficient outcome.
However, the grim trigger strategy is ineffective unless agents will credibly commit to it and
can be extremely pessimistic when agents and circumstances may change [Axelrod, 2000].

Tit-for-tat strategies are similar to grim trigger, except that the punishment is not as long
lived and agents eventually forgive others. Generally, tit-for-tat entails one agent punishing a
defecting agent at least as much as the utility that the offending agent gained by refusing to
provide a favor. If a2 gains some utility x by reducing ca2→a1 and bringing a1’s utility down, then
a1 would like to bring a2’s utility down by at least x by reducing by reducing ca1→a2 . Theorem 2
shows that in our favor model, if a relationship meets the criterion of individual rationality,
then a trigger strategy can be credibly employed to yield a perfect Bayesian equilibrium.

Theorem 2 If agents a1 and a2 are engaged in a relationship where each agent fulfills favors of
some set of costs, Ca1 and Ca2 respectively, and the relationship meets the individually rational
criterion for each agent for the supremum of Ca1 and Ca2, then the agents’ relationship of
fulfilling the favors of Ca1 and Ca2 permits trigger strategies as perfect Bayesian equilibria.

Proof 2 Rewriting Equation 3.1 in terms of gains from favors given by the other agent, G ≥ 0,
losses from providing favors to the other agent, L ≥ 0, and cost of the current game, cΓ ≥ 0,
an agent’s utility becomes U = G − L − cΓ. Fulfilling the maximum value of cΓ ∈ Ca1 for a1

meets individual rationality yielding 0 < Ga1 − La1 − supCa1. Because only a2 can control the
value of Ga1, a2 can use a trigger strategy to reduce Ga1 to 0 if a1 deviates from the strategy of
offering all favors of values in Ca1. As Ga1 > La1 + supCa1, a2’s trigger strategy would nullify
any utility gain that a1 had obtained by deviating. The same logic holds for a1 controlling Ga2.
Therefore, because no agent can increase its expected utility by changing its strategy, and because
the repeated game is a stationary process, the trigger strategy is a perfect Bayesian equilibrium.

The rate of change of a2’s utility, Ua2 , with respect to a2’s rate of change of ca2→a1 can be
written as the partial derivative ∂Ua2

∂ca2→a1
. Because an agent’s utility increases when its costs are

reduced, this partial derivative is always negative. Agent a1 is also able to affect a2’s utility;
changing ca1→a2 increases a2’s utility by the rate of ∂Ua2

∂ca1→a2
.

In steady-state, such as by trigger strategies as in Theorem 2, agents will maintain constant
values of c. If an agent makes a small change to c, its opponent can retaliate the same amount
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to nullify the gain. However, retaliating may be particularly costly to the agent performing the
retaliation, particularly if the agent has a lower discount factor. We can express an equilibrium
where agents have equal control over each others’ utility as

∂Ua1

∂ca2→a1

= − ∂Ua1

∂ca1→a2

and (3.2)

∂Ua2

∂ca1→a2

= − ∂Ua2

∂ca2→a1

. (3.3)

The right hand side of each equation is negative because decreasing one’s own c increases one’s
own utility. Except when the rates of encounter, r, or the maximum favor willing to be offered,
c, are extremely different between the agents, a pair of discount factors and c values exists that
satisfies this equality. Theorem 3 shows that there is always a discount factor that satisfies
Equations 3.2 and 3.3 given that the rates of encounter are equal.

Theorem 3 Given agents a1 and a2 with equal encounter rates, ra1→a2 = ra2→a1, and equal
maximum favor limits, ca1→a2 = ca2→a1, there exists a discount factor for each agent where
each agent can reduce its opponent’s utility at the same rate as its opponent can increase its
own utility.

Proof 3 Given the probability density function (PDF) of C,
fC(·), ∂Ua2

∂ca1→a2
= γa2

1−γa2
ra1→a2E(W )fC(ca1→a2) and ∂Ua2

∂ca2→a1
= −1− γa2

1−γa2
ra2→a1ca2→a1 ·fC(ca2→a1).

limγa2→0

{
∂Ua2

∂ca1→a2
< − ∂Ua2

∂ca2→a1

}
because all terms become 0 except for the 1, leaving 0 < 1.

limγa2→1

{
∂Ua2

∂ca1→a2
> − ∂Ua2

∂ca2→a1

}
because the constant 1 becomes irrelevant and the remaining

values can be divided off leaving E(W ) > c, which was assumed in the problem for individual
rationality. Because 1−γa2

γa2
is continuous and differentiable over the interval of [0, 1), by the

intermediate value theorem, there exists a γa2 that satisfies the equality ∂Ua2
∂ca1→a2

= − ∂Ua2
∂ca2→a1

.
The same derivation holds for the opposite agent.

When Equations 3.2 and 3.3 hold, the two agents can easily nullify their opponents’ utility
gains by applying a small change to their own c values. This further strengthens the agents’
incentives not to deviate from their current values of c, even in the absence of a publicly known
trigger strategy. Because this, we expect the most effective cooperation would occur with agents
that have the most appropriate discount factor for the given parameterization, that is, discount
factors that satisfy Equations 3.2 and 3.3 using the most probable values of c because they
have the most leverage to affect their opponents. We will revisit this notion when discussing
the simulation results.
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3.4 Modeling Reputation

We denote other agents’ reputations from the vantage of agent a1 as a set including a1’s direct
observations combined with the information communicated to a1 by other agents as Ia1 . An
observation, i ∈ Ia1 , consists of the tuple (oi, o

′
i, ti, γ

∗
i ), where oi is the agent that made the

observation, o′i is the agent the observation is made about, ti is the time of the observation, and
γ∗i is the observation range. We define an observation range as a tuple of the upper and lower
bound of the discount factor, γi, given an observation of the action the agent took in a given
game. For the purposes of this section, we assume that agents’ observations are accurate.

New observations can increase the precision and accuracy of a reputation estimate or al-
ternatively invalidate previous observations if they are conflicting. Conflicting observations
typically occur because an agent has undergone replacement, but may also occur due to an
agent finding out that some observations communicated by other agents were incorrect. Given
a set of observations, I, and a new observation, i′, we define the function X , which returns the
set of all observations in I which conflict with i′, as

X (I, i′) = {i ∈ I : oi = oi′ , o
′
i = o′i′ , γ

∗
i ∩ γ∗i′ = ∅} . (3.4)

When agent a1 makes a new direct observation of a2, i′, we denote the resulting relevant history
of observations as Ia1 ⊕ i′. We define this operation of accommodating a new observation as

Ia1 ⊕ i′ =

Ia1 ∪ {i′} iff X (Ia1 , i
′) = ∅,

{i ∈ Ia1 : ti′ ≥ maxj∈X (Ia1 ,i′) tj} ∪ {i′} .
(3.5)

If agents’ strategies are consistent and prevent conflicting observations, we can denote the
expected number of direct observations of a2 between replacements by a1 as E(|{i ∈ Ia1 : oi =
a2}|). This value is maximized just prior to replacement and 0 after the replacement. By using
the equality

∑∞
t=0(1− λa2)

t = 1
λa2

, the expression becomes

E(|{i ∈ Ia1 : oi = a2}|) =
ra2→a1

2λa2

. (3.6)

As the replacement rate drops to 0 and the observation history length becomes infinite, the
only conflicting observations that would occur would be due to agent strategies such as mis-
information or collusion. All else being equal, lower replacement rates would not decrease the
expected number of relevant observations, that is, observations that occur at or after the last
conflicting observation. Given an arbitrary additional observation, i′, some replacement rate x,
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and a small change in replacement rate, ε, this can be expressed as

E(|{i ∈ Ia1 : oi = a2} ⊕ i′| |λa2 = x) ≥ E(|{i ∈ Ia1 : oi = a2} ⊕ i′| |λa2 = x + ε) . (3.7)

With a longer relevant observation history, a conflicting observation probabilistically makes
more of the observation history irrelevant. If agents bias reputation toward a poor reputation
when few or no relevant observations are available, then this mechanism translates into more
difficulty gaining reputation than losing it. In such a system, agents would have increased value
for maintaining a positive reputation because of this bias.

3.4.1 Agents’ Utilities Under Incomplete Information

To denote the results from simultaneously solving the aforementioned constraint of individual
rationality for the maximum allowable c, Ua1 = Ua2 = 0, we introduce a function, γ∗offer : G ×
{P,R} → ([0, 1)× [0, 1)), that solves these simultaneous equalities to find the range of possible
discount factors for the offering agent.2 This function returns the observation of the discount
factor for the offering agent based on the action performed by the offering agent, either P or R,
and the parameters on the game, Γ ∈ G, where G is the set of all possible games that the agent
could play. Each game consists of the favor cost cΓ and the agents involved. The range returned
for γoffer will be one of [γ, 1) or [0, γ], depending on whether the offering agent played P or R,
respectively. We will refer to this range as γ∗i for the outcome of game Γi. Further, we introduce
the function c∗ : [0, 1) × [0, 1) → R, which takes in discount factors (or estimations thereof)
of two agents, γa1 and γa2 , and returns the maximum value of a favor the first agent would
offer to a2, ca1→a2 , under individual rationality for the parameters given. We use the shorthand
notation c∗a1→a2

to indicate c∗(E(γ|{i ∈ I : o′i = a1, oi = a2}, E(γ|{i ∈ I : o′i = a2, oi = a1})).
Both functions γ∗offer and c∗ are used as inputs to Equation 3.1 when the corresponding values
are unknown.

An agent’s expected utility in the current game for a given action is the sum of the value
obtained by the action plus the expected future value, V , of all future games given the agent’s
reputation after having performed the action. In order to find V , an agent a1 must evaluate
other agents’ discount factors from the observations, Ia1 , it has made. When a1 is playing in the

2While we only focus on two-agent interactions, a system of equations of total utility may be used to include
all agents with a separate equation for each agent within the connected components of the communication
graph. These connected components would include the agents of interest, all other agents that those agents trust
sufficiently to accept communicated observations, all agents trusted by those agents to accept an observation,
etc., so all agents may be included. These equations are evaluated from an individual agent’s perspective, so
the values are accurate only to the accuracy of the agent’s information. While these systems of equations can
be difficult or impossible to solve in closed form, numerical methods such as multivariate secant or bisection are
effective.
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offer role, given that a2 has chosen to ask the favor by playing P , we can rewrite a1’s expected
discounted utility from Equation 3.1 relative to its discount factor for the current game, Γ, as
a function of a1’s action, s ∈ {P,R}, as

Ua1(s) = Va1(Ia1 ⊕ (a1, a2, t, γ
∗
offer(Γ, s)))− δs,P · cΓ , (3.8)

where the result of function V yields the future value of a1’s reputation given that a2 will
observe a1 playing s in a game with the value of cΓ. If a1 plays P , then its utility will be
reduced by cΓ.3

Each observation i loses potency as elapsed time increases since the observation was made,
with loss rate based on the replacement rate of the agent observed. The uniform distribution
satisfies the principal of maximum entropy given the maximum and minimum value of an
observation, meaning that given only the information that the actual value is between two
endpoints, the maximum likelihood distribution is uniform. Immediately after an observation,
the discount factor must lie within the range observed, meaning that the probability the discount
factor is outside of that range is 0. After infinite time has passed, the observation becomes
irrelevant and a uniform distribution of belief is resumed. We find the value of the probability
density function (PDF) of an agent’s discount factor γ, given a single observation i and current
time T , discounted by the replacement rate as

fi(T, γ) =


1−(1−λT−ti )(1−(sup γ∗i −inf γ∗i ))

sup γ∗i −inf γ∗i
if γ ∈ γ∗i ,

1− λT−ti if γ /∈ γ∗i .
(3.9)

We can then use Bayesian inference to combine the PDFs of the relevant observations to find
what a given agent will expect another agent to believe of its discount factor, E(γ|T, I), as

E(γ|T, I) =
∫ 1

0
x

∏
i∈I fi(T, x)∫ 1

0

∏
i∈I fi(T, y)dy

dx .4 (3.10)

To find the total future utility for a given reputation, an agent needs to determine its
expected gain from encounters with every agent. By combining relevant observations, finding
the corresponding maximum favor value c∗ using the expected discount factor via Equation 3.10
for each situation, and using the results in the manner of Equation 3.1, we find

Va1(I) =
γa1

1− γa1

∑
a∈A

(
ra→a1PE(W |C < c∗a→a1

)− ra1→aPE(C|C < c∗a1→a)
)
. (3.11)

3The Kronecker delta, δi,j , yields 1 if i = j, 0 otherwise.
4We derive and discuss this type of aggregation in further detail in Sections 4.5.1 and 5.2.
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In addition to using observation and communication to evaluate others’ discount factors,
agents can also strategize how to influence others’ perception of their own discount factor. An
agent would prefer to have other agents overestimate its own discount factor, as the agent could
take advantage of other agents that are willing to give up short-term gains for larger long-term
gains. Similarly, agents do not want others to underestimate their own discount factor, because
they would be missing gains for which they would be willing to reciprocate favors.

Despite the incentive to convince others of an artificially high reputation, our model is
approximately incentive compatible in the steady state because the cost to convince another
agent of a better reputation is more than the expected future gain. Incentive compatibility
is important because without it, agents cannot accurately deduce discount factors from other
agents that strategically give larger favors than they should. While our model does not ensure
incentive compatibility, it generally ensures that the region of incentive compatible state space
is an attractor. When agents are not in a region of the state space that is incentive compatible,
agents are incentivized to correct others’ beliefs.

The three exceptions where our model is not approximately incentive compatible are as
follows. First, while agents prefer opponents to overestimate their discount factors, spending
utility to inflate reputation costs more than an agent will receive from the inflated reputation.
However, if an agent already has a stronger reputation than its discount factor, then the agent
is incentivized to use the reputation and play R for games below c while obtaining favors from
the other agent. Second, if an agent’s reputation is much lower than its actual discount factor,
then the agent may not always offer small favors for small values of c because they may not
sufficiently increase reputation to be worthwhile. While not incentive compatible, these two
cases correct other agents’ beliefs.

The third exception to incentive compatibility is if agents’ discount factors are high and the
value received from a favor is disproportionately large relative to the cost of offering a favor. In
this case, an agent may know that its opponent’s high discount factor will prevent a decrease
in reputation from dramatically decreasing utility because its opponent’s expectations of the
future far outweighing the utility lost. In these cases, agents with the highest discount factors
may not necessarily end up with the highest utility.

3.4.2 Communicating Reputation Information

Agents have a variety of ways to communicate information about other agents’ reputations. An
agent could send another agent its entire list of observations for a given agent, or alternatively
just an estimate of a discount factor. While supplying more detailed information can be more
helpful to the recipient, more degrees of freedom of this information make it more complex for
the recipient to evaluate whether the information is accurate and truthful, particularly if other
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agents are colluding. Because agents can gain utility when others overestimate their discount
factors, a self-interested agent may be reluctant to divulge extra information that might reduce
another agent’s belief of its discount factor.

Our communication model offers similar effects to that of the model proposed by Procaccia
et al. [2007], although their method uses randomization to communicate reputation instead of
ranges of discount factors. Agents maintain observations and communications which are used
in aggregation to evaluate each other and give future recommendations.

We focus on the following simple yet plausible forms of communication. Suppose agent a1

asks a3 a question about whether a2 is trustworthy. Agent a3 can answer yes, no, or refuse to
answer. Similarly, a1 can choose to use or ignore a3’s advice and may solicit advice from other
agents.

Agent a1 could ask a3 whether a3 would provide a favor to a2 for the current game or
whether a3 would recommend a1 provide a favor to a2. These two questions can yield different
answers. For the former question, a3 obviously has more information about itself, but a1 might
not have much information about a3. If a1 does not have much information about a3, then a1

should not ask a3 because a1 cannot effectively evaluate a3’s answer. For the latter question,
a3 has less information about a1, and could be punished for giving a bad recommendation only
for having insufficient information about a1.

Because a1 knows what information it has about a3 better than a1 knows what information
a3 has on a1, asking the question of whether a3 would provide a favor to a2 will provide a1

with the most reliable information. In choosing this question, a1 is incentivized to ask advice
from agents it knows the most about, but may also choose to ask advice from other agents for
the purpose of learning about them. Agent a1 is further incentivized to ask advice from agents
with similar discount factors, because their answers would be similar. However, if a3’s discount
factor is different from a1’s and a1 has some knowledge about a3’s discount factor, then a1 can
still use a3’s advice to learn more about a2.

When a1 asks a3 whether a3 would offer a2 the favor in the current game, a1 would like to
make an observation about a3 in addition to the observation of a2. Agent a1 can combine a3’s
advice with a2’s action and utilize future observations of a2 to more accurately reevaluate the
observation made about a3’s answer. If a3 refuses to answer when asked, a1 can assume a3 is
not confident in its information about a2, and cannot make an observation. If, on the other
hand, a3 answers, a1 will judge a3 based on the recommendation either positively or negatively.

Now we examine the implications of how a3’s recommendation will affect a1’s perception of
a3. Suppose a3 answered it would play P in the queried game. In this case, a1 will compute the
observation of a2 as if it were from a3’s perspective using its belief of a3’s discount factor. Later,
a1 may reevaluate this observation when deciding to offer a favor to a3 by using a1’s current

48



knowledge of a2’s discount factor and the parameters to the game in which a3 had given its
recommendation. Agent a1 will believe that a3’s recommendation is accurate if a1 believes that
a2’s discount factor is within the bounds of a1’s observation of a3’s recommendation. Similarly,
if a3 recommends R to a1 and a1 later finds out that a2 had had a low discount factor, then
a3’s reputation will be increased by the P observation in a1’s hypothetical game between a2

and a3.
Suppose a3 answered it would play R with a2 and a1 finds out later that a2 had had a high

discount factor. Agent a1’s interpretation of the observation of a3’s recommendation would be
that a3 has a discount factor below that required to play P with a1, yielding an upper bound
on a3’s discount factor.

Finally, the most complex case is when a3 answers it would play P with a2, but a1 later
finds out that a2 had had a low discount factor. If a1 finds that a2’s discount factor is low and
does not return favors, then a1 can reason that a3 gave the answer P so that a1 would increase
its expected value of a3’s discount factor. This answer would indicate that a3’s discount factor
is so low that it was not concerned with a1 other than extracting a favor that it would not have
to repay. Because a3’s discount factor cannot be measured with respect to this false information
for the hypothetical game, and because this false answer indicates that a3’s discount factor is
arbitrarily low, a1 would be prudent to throw away its previous observations of a3 to reset its
expected discount factor to a low value.

Note that these hypothetic observations from recommendations should be observed as when
the recommendation was given, not at the time of computation. If a1 believes a2 underwent
replacement since the observation of a3’s recommendation, but a3 has not undergone replace-
ment, a1 should only use its observation history about a2 from before a2’s replacement when
computing a3’s expected discount factor.

The number of observations from communication can scale up with the number of agents as
|A|3 because each agent can communicate with all others about all others. However, in scale-free
networks and other network topologies found in real-world applications, relevant communication
usually scales under that bound. An agent can use various techniques to determine which agents
to ask advice. A simple technique is for an agent to ask other agents that it has interacted
with at least a minimum number of times; we use this in our simulations. For agents with
low replacement rates, more complex evaluations may be used, such as asking agents with
similar discount factors, or agents whose answers are believed to offer the maximum amount of
information entropy about a given agent.

When an agent is reevaluating the impact of observations from recommendations on other
observations from recommendations, the order of evaluation will have some impact on the
results. For example, if a1 accepts conflicting recommendations from a3 and a4 about a2, a3
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or a4 may be incorrectly punished depending on the order of evaluation. This impact can
be minimized by reevaluating observations using the agent’s most recent knowledge. Because
agents need not be truthful, an agent does not know which ordering is best. Reasonable solutions
include evaluating observations in chronological order or minimizing conflicting observations.
We use the chronological ordering in our simulations.

3.5 Simulation Results

We conducted simulations to assess our model’s affects. For the simulations without commu-
nication, we used 32 agents and ran each experiment with 100 rounds. For simulations with
communication, we used 16 agents and 50 rounds (due to the more significant simulation time).
Random numbers were only used to set up the games and agents, so using the same seed with
different algorithms provided the same set of games. While we examined the behaviors across
randomized results, for the graphs in this section we used the same seed for randomizing the
games across variations to remove visible noise and make the results easier to see. The replace-
ment rate was chosen uniformly to be .02 to reflect a mean expected agent life of 50 rounds.
The choice of the replacement rate did not appear to affect the shape of the results provided it
was sufficiently low. Globally high replacement rates remove the effectiveness of a reputation
system because agents do not live long enough in the system to develop a reputation.

We chose the uniform distribution C on [0, 200], the exponential distribution with E(C) =
100, and various values for W because they offered a wide range of behavior even when agents
have full knowledge of each others’ discount factors. From further experiments of different
parameterizations and distributions, the behaviors discussed in this section appear typical.

We ran the experiments with two topologies for agents encounters. The first is a uniform
topology, such that each ra1→a2 was chosen from a uniform distribution on [0, 1]. The second
topology is a scale-free network where agents commonly encounter a small set of agents and
occasionally encounter an outside agent. To construct this network, we begin with two agents
having corresponding encounter rates set to 1, and add agents individually, randomizing the
new agent’s rate of encounter with every other agent proportional to the sum of the other
agent’s rate of encounters relative to the sum of all encounter rates.

To determine the effect of the distribution of agents’ discount factors, we examined four
distributions: uniform, all the same, 4th root of uniform distribution, and 1 minus the 4th

root of uniform distribution. The uniform distribution allowed us to see effects in a diverse
population, whereas the second test made sure that the behavior was consistent when the
agents all had the same discount factor. The the fourth root of uniform distributions, chosen to
give a population of agents with generally high and low discount factors, are biased toward high
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Figure 3.1: Typical simulation results of 32 agents each with a uniform distribution of encounter
rates.

or low discount factors respectively, but with one agent that had an opposite discount factor.
Figure 3.1 shows a small but indicative subset of our results of agents’ performance given

different distributions of W using a uniform topology and uniform distribution of C. Each
point represents an agent’s final utility, and the trend lines are depicted by the best fit quartic
polynomial. We note that the figure shows the total non-discounted utility of the agents so
that they can be directly compared. Simulations with higher expected values of W obviously
have higher final utilities, but the interesting feature is how the group of agents with discount
factors that yield the highest final utility change with respect to W .

The vertical lines near each simulation set represent the discount factor that satisfies
Equations 3.2 and 3.3 with the infimum of C, 0, solved for symmetric rates of encounter of
r ∈ {1, .75, .5, .25}. Each of these lines represents the discount factor where two opposing
agents can equally balance off their retaliations to each other, forming an even tit-for-tat strat-
egy for the given symmetrical rate of encounter. Because we are setting r = ra1→a2 = ra2→a1

in these derivations, the results are approximations to the actual interactions, which do not
typically have symmetric rates.

The results of Equations 3.2 and 3.3 give an intuition of which regions of discount factors will
receive the highest payoffs due to the ease and credibility of sanctioning. Agents with discount
factors below this region will abstain from offering large favors to other agents because of their
impatience and thus agents with higher discount factors will refuse large favors to them, lowering
their utility. When agents with discount factors above this region attempt to sanction agents
with lower discount factors, their sanctions must be strong because of the relative impatience
of the other agents. Given the high utilities for receiving a favor and the low cost of providing
a favor, the magnitude of these sanctions outweigh the benefits they would have gotten if they
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Figure 3.2: Various simulation results of 16 agents for 50 time steps each with a uniform
distribution of encounter rates.

had not sanctioned. A social analogy for the lower utility of agents with high discount factors
in these situations would be a stubbornly pedantic individual being ostracized by his peers
because his peers do not find additional utility from the pedantry.

Figure 3.2 depicts variations with W ∼ U(550, 650) for 16 agents with 50 time steps. The
points labeled Uniform Discount and the corresponding trend line are the same parameterization
as in Fig. 3.1 as a reference point. The two 4th root distributions (labeled High Discount and
Low Discount) show results when agents have high or low discount factors. Groups of agents
with high discount factors outperform the uniform distribution and groups with low discount
factors underperform the uniform distribution. The trends from the distributions matched up
regardless of the topology or communication; throughout all our data, the trend is that agents
with discount factors that allow them to equally retaliate achieving higher payoffs, which may
not necessarily be the highest discount factors. The results from the scale-free distribution
(not depicted) were similar to that of the uniform distribution with the only notable differences
being an increased variance and mean in payoffs. The results from using communication (not
depicted) were that agents with low discount factors tended to have 10-30% lower payoffs.
Agents with high discount factors were less affected, although some attained higher and lower
utilities than without communication.

3.6 Stochastic Discrete Favor Reciprocation

In this section, we outline investigations of solution concepts for a pair of agents entering
a relationship with a stochastic process of favor opportunities, where the favors are chosen
randomly.
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From Equation 3.1, agent a’s expected future benefit from agent b is γa

1−γa
rb→aPE(W |C <

cb→a), and its expected future cost is similarly γa

1−γa
ra→bPE(C|C < ca→b). One drawback of the

favor model is that agents can enter an equilibrium where they must provide costly favors even
if they offer little benefit to the other agent. This behavior is due to the equilibrium requiring
each agent offering all favors below a certain cost. Here, we relax this assumption. In doing
so, the agent now evaluates its own benefit of each potential favor before deciding whether it
should ask the favor in the first place.

For every possible cost to b for providing a favor to a, there exists some benefit to a where
a would ask b the favor, and some lesser benefit (possibly a cost, a negative benefit) where a
would not ask b to perform the favor. Agent a may decide not to ask a favor because the cost is
a burden to the b, and if the b fulfills the favor, then b will have committed more utility to a’s
benefit. To maintain a mutually beneficial relationship, a would need to provide more favors
to b to make up for b’s cost, otherwise b would need to reduce the favors it provides to a. If
b reduced the favors to a, then a may also be forced to reduce its offerings, and may end up
costing b more utility than b gained. If neither a nor b would benefit from changing their favor
process, then the system is in a Nash equilibrium.

3.6.1 Discrete Favors

We now consider the case where an agent offers a favor to another occurs via a stochastic
process, with the set of favors containing a finite number of favors, each with an expected
value. Each favor performed costs the offerer and benefits the asker. An agent can only gain
utility by favors provided by others.

The set of favors, including benefits and costs, as well as agents’ discount factors are all
common knowledge. We define a favor relationship between two agents, a, and b, as the sets of
favors that each will always offer to the other, ξa and ξb respectively, when the favor in the set
comes up due to the stochastic favor opportunity process. These sets of favors are subsets of
the sets of possible favors, Ξa and Ξb.

The process of favor opportunities is stochastic with a discrete time step. Each favor, i, has
a rate, ri, which indicates the probability that the favor will arise during the given timestep.
Agents’ decisions of whether to offer a favor occur one at a time; the game is asynchronous. A
favor relationship is a steady state equilibrium, a solution concept where each agent involved
will always provide all of the favors in its set and assumes that the other agent does as well.
If an agent fails to provide a favor, then the equilibrium will be broken. Following the grim
trigger strategy, the other agent will terminate the favor relationship.5

5A less harsh approach might be that the agent lowers the probability of the favor being offered, for example,
if there is noise in the signal of whether a favor was provided. In no noise is assumed, another possibility is that
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Table 3.1: Example set of favors.
Favor Name A utility B utility rate

A1 -1 3 0.2
A2 -2 5 0.7
B1 3 -1 0.2
B2 7 -3 0.7

Table 3.2: Total future expected utility of agent A and agent B for each possible favor set.
none B1 B2 B1&B2

none 0.0, 0.0 1.2, -1.5 9.8, -8.3 11.0, -9.8
A1 -1.4, 1.5 -0.2, 0.0 8.4, -6.8 9.6, -8.3
A2 -4.8, 8.8 -3.6, 7.3 5.0, 0.5 6.2, -1.0

A1&A2 -6.2, 10.3 -5.0, 8.8 3.6, 2.0 4.8, 0.5

As agents are rational, they will only enter a favor relationship if it is beneficial. This puts
a lower bound of future expected utility to 0 for each agent.

3.6.2 Sustainable Favors Solution Concept

We can abstract this stochastic relationship into an agreement between the agents to model
equilibria. Each agent assumes that the other will provide the corresponding favors for the
current equilibrium. However, if one agent does not offer a favor required to maintain the
current relationship, then both agents must adopt a new equilibrium.

Consider agents A and B with the favor possibilities outlined in Table 3.1. Using discount
factors of 0.5 and 0.6 for A and B respectively, we can compute the expected future utility of
each set of favors, as shown in Table 3.2.

Each agent can only decrease its own utility, and each agent has the ability to terminate
the relationship at any time by offering no favors. A rational agent will not accept a favor set
that offers a negative expected payoff.

To find the equilibria, we can examine each allocation and see whether any agent could
unilaterally improve its utility by offering a different allocation of favors while keeping the
other agent’s utility non-negative. For example, if we begin with the set of all four favors,
{A1, A2, B1, B2}, agent B could improve its utility while still keeping A’s expected utility
positive by not offering B2. When A is offering A1 and A2, A can improve its utility while
keeping B’s utility positive by only offering A2. If either agent does not offer their respective

the agent will assume that only that favor will no longer be provided and find the equilibrium without that favor.
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favor in the set {A2, B2}, then the favor relationship will be broken. Following this process is
much the same way as finding iterated strict dominance of strategies in a classic normal form
game except that the other agent’s utility must be kept above 0.

Algorithm 1 returns agent’s best response to the set of favors, j, offered by otheragent.
The variable best is the current best response, Iagent is the set of possible favors that the agent
can offer, and P is a function which returns the power set of a given set. The function Uagent

returns the total expected utility of agent, with the first parameter being the set of favors it
will offer and the second parameter being the set of favors it will receive.

Algorithm 1 FindBestResponse(agent, otheragent, j)
best← ∅
for all i ∈ P(Iagent) do

if Uagent(i, j) > Uagent(best, j)
and Uagent(i, j) ≥ 0 and Uotheragent(j, i) ≥ 0 then
best← i

end if
end for
return best

Algorithm 2 uses Algorithm 1 to find the equilibrium of the game starting with the specified
agent from a specified favor set. The algorithm recursively alternates between each agent,
finding each agent’s best response and checking whether the other agent would prefer to change
its strategy. Within the algorithm, iA ∈ IA and iB ∈ IB are the current favor set, bestA and
bestB are the best strategies encountered, and agent is the agent that has the current decision.

Whereas the example in Table 3.2 only has one equilibrium, multiple equilibria may exist.
Some may only be reachable if the agents start at specific favor sets rather than the full favor set,
which is why Algorithm 3 examines all possibilities. The algorithm also looks at the possibilities
of each agent being permitted the first move. With multiple equilibria, the agents choose favor
sets from among equilibria strategies along the Pareto frontier. This set of favors may be used
as a normal form game from which mixed strategies may be derived.

The algorithms we present in this section can be made more efficient by using dynamic
programming or function memoization. We present the algorithms as they are for the sake of
clarity. Like the complexity of traditional iterated dominance [Conitzer and Sandholm, 2005],
these algorithms are NP-complete with respect to the size of the favor sets.
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Algorithm 2 FindEquilibriumFromPosition(iA, iB, agent)
if agent = A then
bestA ← FindBestResponse(A,B, iB)
bestB ← FindBestResponse(B,A, bestA)

else
bestB ← FindBestResponse(B,A, iA)
bestA ← FindBestResponse(A,B, bestB)

end if
if bestA = iA and bestB = iB then

if UA(bestA, bestB) ≥ 0
and UB(bestB, bestA) ≥ 0 then

return (bestA, bestB)
else

return (∅, ∅)
end if

end if
if agent = A then

return FindEquilibriumFromPosition(bestA, iB, B)
else

return FindEquilibriumFromPosition(iA, bestB, A)
end if

Algorithm 3 FindAllEquilibria
e← ∅
for all (iA, iB) ∈ P(IA)× P(IB) do
e← e∪ FindEquilibriumFromPosition(iA, iB, A)
e← e∪ FindEquilibriumFromPosition(iA, iB, B)

end for
return e
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3.7 Conclusions

Our favor model offers a mechanism for self-interested agents to achieve cooperation when agents
can only decrease their own utility to increase others’ utility. While it does not necessarily
achieve the maximum possible social utility, it maximizes an agent’s utilities under its own
private discount factor while ensuring that agents can expect to not lose utility by helping
others. Using adaptive discount factor modeling allows analysis to bridge the gap between
reputation and rational strategy. This modeling also allows agents to use discount factors in
other contexts besides favors. For example, if agents were performing market transactions or
playing other repeated games with one another, our favor model can supplement such interaction
systems.

Agents learn other agents’ discount factors and exploit reciprocity. Agents also have the
ability to avoid loss by refusing favors to agents with low discount factors or inconsistent
strategies. Our strategy converges to a steady-state perfect Bayesian equilibrium. For these
reasons, our model approximately meets the criteria described by Vu et al. [2006] for effective
learning algorithms in multi-agent systems.
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Chapter 4

Strategic Transactions With Private

Discounting

4.1 Introduction

Many kinds of business transactions can now be automated or semi-automated, such as pro-
curement, low-touch sales, and stock and commodity trading. As the use of these systems and
agents becomes widespread and more competitive, automating strategy becomes increasingly
important. One primary question in dealing with such interactions is how much one agent
should trust another.

Our primary contribution is the foundation of a strategic transaction-based interaction
model with agents that have private discount factors. The model is a stylized market in which
a set of agents participate to gain utility. We make the strong assumption that all costs and
valuations are common knowledge. While this assumption limits the direct applicability of
the model in many practical settings, such as business-to-business transactions, most of our
model may be extended to work in these settings by including beliefs about valuations which
may be learned [Saha et al., 2003] or inferred. The assumptions of public valuations and costs
allow us to more clearly describe and define our model and results by minimizing notational
verbosity. We derive optimal and approximately optimal strategies and Bayes-Nash equilibria.
Our model supports learning to trust other agents based on their observed discount factor in
market interactions, and strategically communicating about other agents’ discount factors.

Because modeling other agents’ discount factors while strategically interacting with them has
many subtleties, we proceed through this chapter by introducing a simple model and then iterate
over several models, each adding their own complexity. After describing related work, we present
the basic transaction model. We proceed covering the grim trigger strategy and introduce novel
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refinements to handle private discount factors. We next introduce the possibility that agents can
undergo change of their own discount factors, and in doing so, turn the grim trigger refinements
into effective and adaptive strategies. We then discuss interagent communication and present
simulation results. Finally, we draw some conclusions.

4.2 Related Work

Trust, reputation, and reliability have been widely studied in multi-agent systems in a variety
of contexts [Jøsang et al., 2007]. Most work from the computing and AI perspective focuses
on measuring, communicating, and aggregating trust and beliefs to decide whether to begin a
transaction with another agent. Though incentives are regarded as being important in much
of this literature, many models do not exhibit explicit incentivization mechanisms nor study
strategic interactions. Wang and Singh develop an observation-based model in which agents can
model the probability and confidence that another agent will act in a positive fashion [Wang and
Singh, 2007]. Their model only accounts for equally weighted positive and negative experiences,
and does not model strategic interactions. Other models, such as those by Huynh et al. [Huynh
et al., 2006] and Yu and Singh [Yu and Singh, 2002], provide empirical evidence from simulation
that their models improve social welfare. However, the results may not hold with self-interested
agents.

Jurca and Faltings present an incentive-compatible decentralized mechanism for communi-
cating reputation by employing specialized reputation measuring agents [Jurca and Faltings,
2003]. Their work focuses on information brokers that buy and sell information on the repu-
tation of another set of agents that use a different currency to play prisoner’s dilemma games.
The two tiers of agents differentiate the scope of their model from ours, though our model could
conceivably be combined with parts of theirs. Sandholm and Lesser explore mechanisms of us-
ing divisible goods to encourage agents to exchange without external enforcement [Sandholm
and Lesser, 1995]. While their approach solves similar problems to ours, it requires divisible
goods and exchanges. Further, our model focuses on determining agents’ differing discount
factors and accordingly adapting strategic behavior.

Trust has also been widely studied in economics. A notable difference from the economic
perspective, compared with the computing and multi-agent perspective, is that economics lit-
erature tends to primarily focus on incentives, strategic interactions, and consequences. In his
survey of economics literature on trust, James [2002] offers a suggestion that the use of the word
trust should be abandoned in the literature because of its ambiguities with regard to incen-
tives and strategy. The use of the word trust is notably absent in much of the game-theoretic
literature.
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Our work is similar to Sen’s work [Saha et al., 2003, Sen, 2002] in that we build a reciprocity
model on future expectations, but we allow for the discovery of private discount factors, observe
ranges of responses rather than point values, and do not use randomization to communicate
signals. Our model also resembles that of Buragohain et al. [2003] in the way we are using
incentives to build trust in an environment with favors, but the primary differences are that
their model has continuous interaction and does not deal with discount factors.

Our agent communication model offers similar effects to the model proposed by Procaccia
et al. [2007]. Agents maintain observations and communications which are used in aggregation
to further evaluate each other and give future recommendations. The primary differences are
that their method uses randomization to communicate reputation scores instead of observations
of discount factors and our aggregation methods are based on ranges of observations.

Systems to incentivize agents to share resources in peer-to-peer (P2P) file-sharing networks
are an application of reputation management that has received considerable attention. Kamvar
et al. develop a distributed probabilistic measure of trust [Kamvar et al., 2003]. While they do
not address the issues from a game-theoretic perspective, they argue how their model will hold
up under different threats. Buragohain et al. [Buragohain et al., 2003] and Li et al. [Li et al.,
2007] develop game-theoretic models to incent agents to share resources by using a probabilistic
approach in trusting other agents. The primary difference between our assumptions and those
of Buragohain et al. and Li et al. is that our model uses discount factors and agents are
presented with a series of independent transactions instead of having time-invariant utilities in
a steady-state trading of resources with explicit externalities. Golle et al. are able to circumvent
some of the trust problem in centralized P2P systems by developing a centralized market-based
transaction system, aided by delivery quality guarantees afforded by cryptographically secure
hashes of commodity files [Golle et al., 2001].

At the core of our model is the iterated prisoner’s dilemma. While derived in game theory
and economics to model many situations involving trust, the strategic play in the prisoner’s
dilemma has been widely studied in multi-agent systems as well. Sandholm and Crites apply on-
line reinforcement learning for determining optimal strategies in the prisoner’s dilemma [Sand-
holm and Crites, 1995]. Birk shows that evolutionary game theory is useful to bring populations
to trust other agents in an N-player prisoner’s dilemma [Birk, 2001].

The problems of measuring individuals’ discount factors and modeling their change over time
have also been studied. However, these problems have been studied to a lesser degree than most
of the aforementioned topics, particularly when both problems are featured together. Rust and
Phelan use a search technique to approximate individual discount factors in their study on social
security and medicare [Rust and Phelan, 1997]. Hazard constructs a favor exchanging model for
gift economies, measuring discount factors and using them strategically [Hazard, 2008]. This
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a1

a2

Pay (P ) Not Pay (N )
Give (P ) m − c, w − m −c, w

Not Give (N ) m, −m 0,0

Figure 4.1: Our two-player transaction model.

model is closest to the work we present, although we find that discount factor correlates better
with utility with our transactions method than is shown in the gift economy. Baye and Jansen
construct folk theorems for stochastic discount factors [Baye and Jansen, 1996]. In comparison,
our work treats discount factor replacement as different agents, so individual agents are not
anticipating their own future discount factors.

4.3 The Transaction Game

Each agent a ∈ A is assigned a type including a discount factor, γa ∈ [0, 1), which indicates
the agent’s time preference for utility. At every round, an agent is randomly paired off with
other agents to play a randomized transaction game. Each possible pair of agents has a rate
of encounter of ra1,a2 encounters per round, where ra1,a2 ∈ (0, 1] signifies the probability of an
encounter between the two agents with agent a1 selling an item to agent a2. An agent’s goal
is to maximize its utility with respect to its discount factor. Each agent is thus incentivized
to learn other agents’ discount factors to formulate a best response for each game played, and
will play according to its current beliefs of the other player. After playing a game, each agent
records an observation of the encounter to learn more about the other agent.

The games are a manifestation of the prisoner’s dilemma, modeled as a market transaction
where all prices and costs are public. Agent a1 is the producer or seller of a good or service,
which we shall refer to as an item, and agent a2 is the consumer. We will use a1 and a2 to
denote two generic agents as their roles may be reversed, but we will primarily use notation
from a1’s perspective.

We consider three prices associated with this transaction: the cost for a1 to produce the item,
c, the market value of the item, m, and a2’s willingness to pay for the item, w. When referring
to specific values, we will use the lower case c, m, and w and when referring to the random
variable, we will use upper case C, M , and W . While we use the same price distributions for
all agents for simplicity, this need not be the case. The model will work without modification
if agents have different distributions, such as if Wa1 6= Wa2 . The normal form of the game is
depicted in Figure 4.1. If the game did not satisfy the constraint w > m > c, then at least one
player would play N and thus reveal nothing of its discount factor to the other agent. Thus,
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we can deal with this in one of two ways: either both agents will play N , or we can choose
distributions to satisfy the constraint.

The simplest way to choose distributions that satisfy the constraint is to choose the numbers
from three non-intersecting ranges as c ∈ (0, q], m ∈ (v, x], and w ∈ (y, z] with q ≤ v and x ≤ y.
If we were to instead use three random variables, X1, X2, and X3 to construct the game as
c = X1, m = X1 +X2, and w = X1 +X2 +X3, we would have distributions that satisfied the
constraints and had easily discernable expected values. The drawback of adding three random
variables together is that we push the distribution of w and m towards the normal distribution
due to the central limit theorem. While our model can be modified to support overlapping
distributions, where both players play N to ignore games that violate w > m > c, we use
independent variables to keep the formulae more readable.

4.4 Grim Trigger Strategies

In this section, we introduce the classical grim trigger strategy (play P until opponent plays N ,
then play N forever), abbreviating grim trigger as GT. We modify GT to utilize knowledge of
discount factors and define an optimistic version to discuss the strategy playing against itself.
We assume that the population is not stuck in an evolutionary stable strategy of all playing N .
Each agent is playing a strategy that involves protecting itself against N actions from other
agents, which may include the possibility of punishing opponents that play N . Such strategies
include variants of tit-for-tat (start with P and play opponent’s previous move), and GT.

4.4.1 Grim Trigger Above Discount Factor

If a2 is of a GT type, then a1 needs to decide based on its discount factor whether a large
short-term gain is better than a lower but longer term-gain. Agent a1’s expected gain from
any given successful future transaction can be expressed as E(M)−E(C) = E(M −C), where
E(M) is the expected market price of an item that is paid to a1, and E(C) is the expected
cost for a1 to produce or obtain the item. In the case of playing against a strict GT type,
the discounted utility of playing P , UGT (P ) may be found by taking the expected value of the
geometric sequence of the discount factor in terms of the rate of encounter, ra1,a2 , as

UGT (P ) = (m− c) · γ0
a1

+
∞∑

t=1

γt
a1
· ra1,a2 · E(M − C)

= m− c+
γa1

1− γa1

ra1,a2 · E(M − C).
(4.1)
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Similarly, the expected utility of playing N , UGT (N) is

UGT (N) = m · γ0
a1

+
∞∑

t=1

γt
a1
· ra1,a2 · 0 = m. (4.2)

When playing against an agent of type GT, a1 should play P if and only if UGT (P ) ≥ UGT (N).
From Equations 4.1 and 4.2, a1 will play P if and only if

c

c+ ra1,a2 · E(M − C)
≤ γa1 . (4.3)

While the GT strategy can protect an agent from losses, GT agents can miss out on potential
gains, particularly in stochastic games. When a2 observes a1 playing N , a2 infers that a1’s
discount factor is below the threshold required to play P . However, future games may contain
immediate payoffs for a1 not high enough to warrant playing N . We introduce a new strategy,
Grim Trigger above Discount Factor (GTDF). Using this strategy, agent a2 begins by playing
P . Whenever a1 plays N , a1 will record the highest discount factor required for an agent to
play N against a GTDF agent, and then a2 will always play N for any game exhibiting payoffs
that it expects a1 to play N . For future games with payoffs that require a lower discount factor
than recorded, a2 will play P until it observes a1 playing N below the corresponding discount
factor.

When a rational, normal type a1 is faced against a GTDF type a2, a1 must continually
evaluate whether to play N or P based on a2’s knowledge of a1’s discount factor. If a1 plays
P , a2 will not lower its expectation of a1’s discount factor. Agent a1 knows that the lowest
discount factor it has exhibited to a2 in a game is γ

a1
, where γ

a1
≥ γa1 . We also introduce

corresponding notation for c and m. We denote the smallest values where the corresponding
agent played N as c for a1 and m for a2. Agent a2 will play N for any game that offers an
incentive for a1 to play N given a2’s belief of a1’s discount factor, reducing a1’s outcome to 0
in those games.

When a1 plays N , it will no longer be able to gain utility from any games that require
a higher discount factor than it has exhibited. We can thus rewrite Equations 4.1 and 4.2
to account for the utility gained or lost by a GTDF agent playing N . Here we only need to
consider games when C ∈ [c, c]. The probability of a game meeting this criteria can be denoted
as P (C ∈ [c, c]). Values of C outside of this range are given 0 marginal utility since they will
not be affected by the agent’s action in this game, because a2 will play N above c and a2 will
play P under c (assuming it is considering playing P in this game). If a1 plays N , then a2

will play N for all values greater than or equal to the current value of c, as a2 will modify γ
a1

accordingly. For conciseness, we define the shorthand notation PE(Y |X) ≡ P (X) · E(Y |X),
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where P (X) is the probability of event X occurred and E(Y |X) is the expected value of Y
given that X occurred. We can write a1’s expected discounted marginal utility of playing P ,
UGTDF (P ), as

UGTDF (P ) = (m− c) · γ0
a1

+
∞∑

t=1

γt
a1
· ra1,a2 · PE(M − C|C ∈ [c, c])

= m− c+
γa1

1− γa1

ra1,a2 · PE(M − C|C ∈ [c, c]).
(4.4)

Because a1 does not gain utility above the initial m given the condition C ∈ [c, c], the ex-
pected marginal utility of playing N , UGTDF , is the same as UGT . The corresponding inequality
for Inequality 4.3 with respect to GTDF is

c/ (c+ ra1,a2 · PE(M − C|C ∈ [c, c])) ≤ γa1 . (4.5)

The two components PE(M − C|C ∈ [c, c]), P (C ∈ [c, c]) and E(M − C|C ∈ [c, c]), can be
written in terms of the probability density function (PDF) of c, fC(x), as

P (C ∈ [c, c]) =
∫ c

c
fC(x)dx and (4.6)

E(M − C|C ∈ [c, c]) = E(M)−
∫ c

c
x · fC(x)

P (C ∈ [c, c])
dx. (4.7)

To ensure the consistency of the strategy given by Equation 4.7 against the GTDF strategy,
we verify that our consideration that only games with C ≥ c will be affected by an N action
with Theorem 4. We do this by showing that c and γa1 are bijective.

Theorem 4 The discount factor at which a1 would be indifferent between playing N and P for
a given value of c against a GTDF type a2, γ∗a1

(c), defined as
γ∗a1

(c) = c/ (c+ ra1,a2 · PE(M − C|C ∈ [c, c])), is bijective on the domain [0,∞) and range [0, 1)
for any differentiable PDF of C where E(C) is defined.

Proof 4 Let G(c) ≡ ra1,a2 · P (C ∈ [c, c]) · E(M − C|C ∈ [c, c]). From Equations 4.6 and 4.7,
G(c) = ra1,a2 · E(M) ·

∫ c
c fC(x)dx − ra1,a2 ·

∫ c
c x · fC(x)dx. For γ∗a1

(c) to be strictly increasing,
its first derivative must always be positive, that is, d

dc
c

c+G(c) > 0. Using the quotient rule,
eliminating the positive squared quotient, and rearranging yields ra1,a2 · P (C ∈ [c, c]) · (E(M)−
E(C|C ∈ [c, c])) > ra1,a2c · (E(M) · d

dc

∫ c
c fC(x)dx + d

dc

∫ c
c x · fC(x)dx). We can eliminate

ra1,a2 from both sides of the inequality because it is non-negative. Because the upper bound
of the integrals is not a function of c, we can take the negative derivative at the lower bound
to find P (C ∈ [c, c]) · (E(M) − E(C|C ∈ [c, c])) > c (−E(M) · fC(c)− c · fC(c)). As fC is a
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PDF and thus non-negative, c is positive, and E(M) is positive, the right side is non-positive.
Additionally, because M > C always holds, the left side is positive. Therefore, γ∗a1

(c) is strictly
increasing, thus injective.

To prove that γ∗a1
(c) is bijective, we also need to show it is surjective. Because E(M −

C|C ≥ 0) > 0 by definition of the game, γ∗a1
(0) = 0. We employ l’Hôpital’s rule to find

γ∗a1
(∞) = limc→∞ 1/(1−E(M) · fC(c)− c · fC(c)). Since C > 0, E(C) is defined, and the area

under fC is 1, we know that limc→∞ c · fC(c) = 0 must hold and thus limc→∞ fC(c) = 0 must
also hold. Therefore, γ∗a1

(∞) = 1, so γ∗a1
spans the codomain of [0, 1) and is surjective.

If a1 plays N when a2 was expecting a1 to play P , then a2 must update its belief about a1’s
discount factor. In this case, a2 can use Theorem 4 to find a new value of γ

a1
, above which to

always play N . By replacing the appropriate values, Theorem 4 holds for the buyer’s role as
well.

4.4.2 Equilibria of Optimistic GTDF Agents

Consider two agents playing the transaction game, where both agents are of an optimistic type
(OPT). We define an optimistic type as employing a strategy where an agent believes that its
opponent’s discount factor is the maximum value possible given everything it has observed, but
otherwise behaves in a strategic, rational manner. With no information about its opponent,
an OPT type agent initially believes its opponent’s discount factor is 1, thus the agent can
only learn that the actual value of its opponent’s discount factor is below the currently believed
value.

When both agents are of OPT type, each needs to keep track of its opponent’s belief of its
own discount factor. While the game’s strategies from both roles are similar, we shall again
assume the perspective of a1 in the sell role. Agent a1’s initial belief of a2’s discount factor is
γ

a2
= 1, the underline again representing the lowest currently believed value. Agent a1 knows

that a2 initially believes a1’s discount factor is γ
a1

= 1.
To maximize utility, a1 needs to evaluate its expectations of a2’s discount factor as well as

its expectations of a2’s exceptions of a1’s discount factor. Agent a1 should play P only if P
both offers a higher expected utility and it expects a2 to also play P .

We can extend Equations 4.6 and 4.7 to include the PDF of m as

P (C ∈ [c, c] ∩M ≤ m) =
∫ m

−∞

∫ c

c
fC(x) · fM (y)dxdy (4.8)
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and

E(M − C|C ∈ [c, c] ∩ M ≤ m) =
∫ m

−∞

∫ c

c
(y − x) · fC(x) · fM (y)

P (C ∈ [c, c] ∩M ≤ m)
dxdy. (4.9)

We can then use Equations 4.8 and 4.9 to modify Inequality 4.5 to include the cases when
a2 will play N based on γ

a2
and the corresponding c and m values. To maximize utility, an

OPT type a1 should play P if and only if both of the inequalities

γa1 ≥
c

c+ ra1,a2 · PE(M − C|C ∈ [c, c] ∩M ≤ m)
(4.10)

and
γ

a2
≥ m

m+ ra1,a2 · PE(W −M |M ∈ [m,m] ∩ C ≤ c)
(4.11)

are satisfied. If Inequality 4.11 is not satisfied, then a2 will play N , and so a1 should also play
N . If Inequality 4.10 is not satisfied, then a1 should play N to protect itself from loss. Note
that the optimal behavior of a1 playing N when a2 plays P is covered by these two inequalities
if γ

a1
were substituted in for γa1 in Inequality 4.10. Because each agent maximizes its utility

based on knowledge of the other agent, and no agent can gain utility by playing differently, this
is a unilaterally optimal strategy and thus a Bayes-Nash equilibrium given the assumptions of
the OPT agent type.

4.4.3 Dynamic Behavior of GTDF Agents

The strategies we have presented for GTDF and OPT agents do not necessarily produce sus-
tainable outcomes. Agents begin with an ideal reputation, but the subgame perfect Bayes-Nash
equilibria we describe lead an agent to continually spend its reputation until it asymptotically
achieves the worst possible reputation. Suppose a2 currently believes that the maximum c for
which a1 will play P is c. We define c∗ as the maximum value of c that satisfies Inequality 4.10
and m∗ corresponding to Inequality 4.11. We can obtain the expected value of c in the next
time step, c′, by subtracting the expected decrease in c when a1 plays N and a2 is expecting
a1 to play P as

c′ = c− ra1,a2P (C ∈ [c∗, c]) · (E(C ∈ [c∗, c]− c). (4.12)

Equation 4.12 can be iterated to find the time to reduce c by a given amount or to find
the rate at which a1 gains from spending its reputation over a given time. Note that the term
subtracted from c is nonnegative, as an agent will not increase another agent’s perception of
its own discount factor. As long as P (C ∈ [c∗, c]) > 0 and c∗ 6= c, a1 will reduce c.

If an agent employs an alternate strategy of maintaining a constant reputation, such as a1
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playing P whenever c∗ ≥ c, keeping c constant when a1 expects a2 to also play P . However, the
discounted future utility for a given reputation and time is lower when maintaining a constant
reputation when compared to the corresponding optimal strategy we present. The difference
between those two strategies increases as an agent’s discount factor decreases.

By relaxing an assumption of the OPT agents we can attain a subgame perfect Bayes-Nash
equilibrium with higher utility than the strategy of spending reputation to attain short-term
utility. Consider two agents with static reputations playing in a long-running equilibrium. Each
agent knows the other’s discount factor instead of optimistically assuming that the other has
the maximum discount factor given the current information. If a1 plays N while a2 is expecting
mutual P actions, then a2 loses utility as well. Agent a2 can sanction a1 in retaliation by playing
N when a1 expects both to play P . If both agents know the other will retaliate against spending
a reputation for utility gain, then agents will be incentivized to maintain their reputations and
achieve higher payoffs. We investigate these strategies further in the next section.

4.5 Discount Factor Replacement

Here, we allow agents to have more complex beliefs about other agents’ discount factors. To
make the model more flexible, we open an agent’s belief of a discount factor to include an
adaptive distribution of values, still using the expected value to model an opponent’s strategic
interactions. Agents may start off believing that other agents’ discount factors are low. As
agents interact, an agent can optimally change its expected value for another’s discount factor
based on a process of discount factor replacement.

Each agent a ∈ A has a constant discount factor replacement probability, λa. The discount
factor is changed to a new value based on a Bernoulli process 1 with a probability of λa of
changing between each game, and we shall refer to each discount factor change as a replacement.
By using a discount factor replacement process, we are able to model agents’ type changes over
longer durations of time. Agent replacements have been shown to be an effective tool for
modeling how agents change over time [Mailath and Samuelson, 2006]. The replacements may
be due to a change in the market, agent’s ownership, information, or other factors in a dynamic
environment.

We make a few assumptions about the discount factor replacement process. First, we
continue the assumption that the discount factor is a private value, and must be discovered
by other agents. By this assumption, an agent would prefer other agents to overestimate
its own discount factor in order to gain utility at the expense of other agents. Second, we

1As the Bernoulli process is the discrete counterpart to the Poisson process, the task of transitioning the
model from synchronously repeated games to a continuous time process is mostly straightforward. Using a
Poisson process, λa becomes the discount factor replacement rate.
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assume that the discount factor replacement probability is public. Due to the memoryless
nature of the replacement process, knowing the last time an agent was replaced does not
matter. The actual replacement process in a variety of real-world applications may be arbitrarily
complex while still allowing others to estimate the replacement probability. For example, if
a firm is performing poorly because of a low discount factor, the firm may have a higher
probability of being replaced than a profitable firm with high discount factor. While extending
the model to allow agents to model opponents’ private dynamic replacement probabilities may
have some interesting implications, we focus here on the base model with constant replacement
probabilities and leave such extensions of the model for future work.

Finally, we assume that agents are unaware when their discount factor changes, and at any
moment each agent assumes that it will continue to have its current discount factor indefinitely.
This assumption may be easily relaxed by using γa·(1−λa) in place of γa as the effective discount
factor throughout our model and also use the observation that a discount factor cannot be more
than γa · (1− λa). While this final assumption is not critical to our central arguments, and our
model easily supports its relaxation, this assumption allows more clarity in representation and
discussion.

4.5.1 Accounting for Observation History

We denote one of agent a1’s observations, i ∈ Ia1 , as the tuple (ai, a
′
i, γ

∗
i , ti), where ai is the

agent that made the observation, a′i is the agent the observation is made about, γ∗i is the
observation range, and ti is the time of the observation. Given observation event i after playing
a game against a′i, the observed discount factor is above or below a constant bi, denoted as
γ∗i = [bi, 1) or γ∗i = [0, bi]. We expand the use of the symbol γ∗ from Theorem 4, when used
with an observation subscript, to represent this range indicated by the observation instead of
the indifference point. The two possible observations are γa′i

≥ bi and γa′i
≤ bi, where we use

a line above or below b and other variables to indicate whether they are an upper or lower
bound. Consider the case observation i at time ti shows γa′i

≤ bi. We use T to denote the
present time. The cumulative distribution function (CDF) of γa′i

at the present time given an
upper-bound observation i for agent a may be written as a function of an input discount factor,
x, as F i(T, x). The CDF, F i(T, x), is related to the PDF of γa′i

given this event, f i(T, x), in

the usual fashion as F i(T, x) =
∫ bi

0 f i(T, x)dx.
Upon immediate observation of i, agent a′i will not be able to change type, so F i(ti, bi) = 1.

Similarly, when the observation is no longer relevant, knowing nothing about agent a′i’s discount
factor distribution entails using the corresponding maximum entropy distribution. If an agent
has a priori knowledge of the distribution of discount factors, then the model may be adjusted
to accommodate the prior probability. Given an upper and lower bound, the maximum entropy
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Figure 4.2: Graph of discounted PDF of discount factor, given λ = .7, and observation γ ≥ .3.

distribution is uniform. Therefore, the infinitely discounted distribution of agent a′i’s discount
factor must yield F i(∞, bi) = bi. We may discount the observation given the discount factor
replacement parameter as F i(T, bi) = 1 − (1 − λT−ti

a′i
)(1 − bi). This makes the other region

1 − F i(T, bi) = (1 − λT−ti
a′i

)(1 − bi). We divide each region by its corresponding length to find

the discounted PDF for the case of γa′i
≤ bi as

f i(T, x) =


(
1− (1− λT−ti

a′i
)(1− bi)

)
/bi if x ≤ bi,

1− λT−ti
a′i

if x > bi.
(4.13)

Similarly, the PDF for γa′i
≥ bi is

f
i
(T, x) =


(
1− (1− λT−ti

a′i
)bi
)
/(1− bi) if x ≥ bi,

1− λT−ti
a′i

if x < bi.
(4.14)

Figure 4.2 shows an example of this PDF discounting.
To find the expected value for agent a′i’s discount factor, we can use the definition of con-

ditional probability to combine historical probabilities. The PDF of γa′i
given the observation

history is equal to the intersection of all of these probabilities divided by the total probability
of all the intersections, because we are given that γa′i

is chosen from the intersection of these
probabilities. Using the function fi to denote the proper f i or f

i
as appropriate for the ob-

servation, we can thus find the expected value of γa′i
for the current time T from the set of

observations I as

E(γa|T ) =
∫ 1

0
x

∏
i∈I,a′i=a fi(T, x)∫ 1

0

∏
i∈I,a′i=a fi(T, y)dy

dx. (4.15)

Figure 4.3 depicts the PDF from three combined observations as

fa,I(γ) =

∏
i∈I,a′i=a fi(T, γ)∫ 1

0

∏
i∈I,a′i=a fi(T, y)dy

. (4.16)
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Figure 4.3: Graph of combined discount factor PDFs, given λ = .7, and observations γ ≥ .3 at
time T − 0, γ ≤ .7 at T − 4, and γ ≥ .5 at T − 5.

Suppose an agent observes γa ≥ .5 at time 0 and then γa ≤ .4 at time 4. Because the overlap
of these regions is null, the old evidence is no longer valid and that agent a has undergone a
discount factor replacement between the two observations. Further, any observations prior to
the replacement should be disregarded.

While we assume that an agent’s rate of replacement is public, conflicting observations
reveal information about the underlying rate, making it possible to discover if it were private.
One way to measure the replacement rate is to find the relative entropy gained by each new
observation. If the information gain is high after a long history, then it is more likely that a
replacement has occurred. Another is to find the posterior probability of both a retainment
and replacement of the discount factor for each combination of observations to determine the
expected value of the number of replacements for a given time frame. Both of these methods
assume that λa does not change. In reality, the probability of an agent being replaced may be
an arbitrarily complex function, as mentioned earlier. In these cases, domain specific models
or machine learning may be more appropriate.

We will refer to the agent type that utilizes the observations discussed in this section to
determine other agents’ discount factors and other agents’ perceptions of its own discount factor
as Adaptive Discount Factor Discovery (ADFD). By using discounted reputation measurements,
agents receive an eventually forgotten punishment for playing below their discount factor. The
temporary punishment gives ADFD the same effect of Tit-for-Tat, but takes into account
stochastic interactions and differing discount factors.

4.5.2 Dealing With Observation Errors

Consider the probability of making an erroneous observation of agent a′ is pa′ . This could be
due to a′ attempting but failing to deliver a favor. In looking at the PDF expressed above,
the value of the PDF in the region where the discount factor cannot be can be expressed as
0 · λT−ti

a′i
+ 1 · (1 − λT−ti

a′i
). In dealing with the probability, this formula now needs to yield pa′
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when multiplied by the area 1− bi. This formula becomes pa′

1−bi
· λT−ti

a′i
+ 1 · (1− λT−ti

a′i
). Since

the area under the PDF must be 1, we can split the region into two, the lower with area v1 and
the upper with area v2, with the constraint of 1 = biv1 + (1 − bi)v2 since the area represents
probability. The PDF of a′’s discount factor including this error probability becomes

f i(T, x) =

1− pa′−(1−bi)

bi
λT−ti

a′i
if x ≤ bi,

1−
(
1− pa′

1−bi

)
λT−ti

a′i
if x > bi,

(4.17)

and

f
i
(T, x) =

1− pa′−bi
1−bi

λT−ti
a′i

if x ≥ bi,

1−
(
1− pa′

bi

)
λT−ti

a′i
if x < bi.

(4.18)

This formula may also be written in the other notation (used for favor reciprocation) as

fi(T, γ) =

1− pa′−(1−(sup γ∗i −inf γ∗i ))
sup γ∗i −inf γ∗i

λT−ti
a′i

if γ ∈ γ∗i ,

1−
(
1− pa′

1−(sup γ∗i −inf γ∗i )

)
λT−ti if γ /∈ γ∗i .

(4.19)

4.5.3 Concealing an Agent’s Discount Factor

ADFD type agents must deal with replacement of other agents’ discount factors. If a1 is aware
of a2’s currently low discount factor, then a1 may frequently play N to prevent loss of utility
to a2’s N actions. When a2’s discount factor is replaced with a higher discount factor, a1 will
still play N for some time until it discovers that a2’s discount factor is now higher. Because
the replacement rates and actions between the two agents are visible to a2, a2 will realize that
a1 has not figured out a2’s new discount factor. Agent a2 should not necessarily assume that
a1’s N actions indicate that a1’s discount factor is lower than it actually is.

Consider the case where a1 has additional information about a2 that a2 does not know that
a1 has. This information could be related to distribution of discount factors, obtained from
other agents, or a priori beliefs. Because a2 does not know a1 has this information, a2 attributes
all of a1’s actions to a1’s discount factor.

We introduce a refrain action, R, which allows an agent to abstain from playing in a round.
Action R allows an agent to strategically protect itself against an agent with a lower discount
factor without giving false indications of its own discount factor. When either agent plays R,
both agents receive 0 utility for the round, regardless of what the other played. Because of the
replacement rate, playing R will not stop other agents’ views of an agent’s discount factor from
changing. Agents whose expected discount factor is low will gain slightly from playing R due
to the forgetting from other agents, and likewise agents that have a high discount factor will
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receive a small expected loss. However, the change in expected discount factor will be changed
by the same rate for all actions, including R, due to aging observations. Action R makes the
model fit more realistic situations, because an agent can often choose whether to interact or do
business with another agent. The introduction of R makes the P and N actions more akin to
actions after entering a contract, whereas R is to not enter the contract.

To evaluate the utility of the different actions, we need to extend some definitions from the
simpler models. We update the definition of c and m to reflect the highest prices at which
an agent will play P that corresponds to the expected value of each agent’s discount factor.
Theorem 4 continues to hold when given an additional condition on the distribution of M as
exhibited in Equations 4.8 and 4.9. This theorem allows us to use the function γ∗ to map
between a2’s expected value of a1’s discount factor, E(γa1), and a2’s perceived maximum price
for which a1 will play P , c. We also expand the definition of c∗ as the inverse of γ∗ to find c

given a discount factor.
Agent a1 needs to determine what it expects a2 to play given only the current information

a1 knows about a2. Each agent knows it will be retaliated against if it plays N below the
maximum value where its expected discounted future utility is equal to the value of playing N
in the current game. We denote the expected discount factor of a2 as E(γa2), yielding a result
similar to Inequality 4.11, as

E(γa2) =
m

m+ ra1,a2 · PE(W −M |M ≥ m ∩ C ≤ c)
. (4.20)

If using the m and c values for the current game in place of m and c in Equation 4.20 results
in a discount factor greater than E(γa2), then a1 expects a2 will want to play N . However, a2

will play R because a2 knows that a1 expects this and will play R as to not divulge information
about its discount factor. Agent a2’s model of a1 will look like Inequality 4.10 based on a2’s
expected discount factor of a1, E(γa1), as

E(γa1) = c/ (c+ ra1,a2 · PE(M − C|C ≥ c ∩M ≤ m)) . (4.21)

If E(γa2) is sufficiently high and Equation 4.21 does not yield a sufficiently high discount factor,
then a2 expects a1 will want to play N , but will actually play R to prevent a2 from learning
more about its lower discount factor. If both discount factors are high enough, then both
agents want to play P and expect the other to play P . However, in this case, each agent can
use information about itself that the other agent does not have.

When deciding to play P or N , a1 knows playing P will increase a2’s expected value of a1’s
discount factor, and playing N will probably decrease it severely. With a1 knowing its own
replacement rate, λa1 , a1 can determine a2’s expected value of a1’s discount factor, E(γa1 |γ′a1

),
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given the expected value of a1’s discount factor from the new observation γ′a1
. We can write

the expected discount factor given a new observation for agent a as

E(γa|E(γ′a)) = E(γa) · (1− λa) + λa · E(γ′a). (4.22)

Note that Equation 4.22 only works for an immediate observation. Equation 4.15 is required
for any other time ti 6= T .

To compute the expected impact of utility given an observation, a1 will need to model how
much a2’s beliefs will change of a1’s discount factor. This expected discounted future utility,
VADFD(γ), given a2 believes a1’s discount factor is γ, is

VADFD(γ) =
∞∑

t=1

γt
a1
· ra1,a2 · PE (M − C|M ≤ m ∩ C ≤ c∗(γ)) . (4.23)

The c value of the current game indicates the boundary of the observation of a1’s discount
factor. Given only the extrema of a probability distribution, the maximum entropy distribution
is uniform, so the expected value of the discount factor is the average of the extrema of the
observation. Agent a2 will expect a1’s discount factor to be E(γa1 |(1 + γ∗a1

(c))/2) if a1 plays P
and E(γa1 |(γ∗a1

(c) + 0)/2) if a1 plays N . Due to the discounting of the replacement process, a2

will expect E(γa1 |1/2) if a1 plays R.
Now that we have evaluated a1’s expectations of what a2 will play and a1’s utility for a2

observing each action, we can express a1’s expected utilities for each of its actions. If a1 expects
a2 to play R, then a1 should play P to give a2 an observation of playing P . If the expectation
of a2 to play R is mutual knowledge, then a2 may choose to ignore the observation, since a1

may not have played P if a2 was playing P . However, a1 is taking on some risk in playing P ,
so a2 may count the observation.

If a1 expects a2 to play N , then a1 should play R to defend itself. However, if a1 expects
a2 to play P , then a1 needs to determine which action maximizes its own marginal utility,
UADFD. In steady-state, where the influx and discounting of observations are in balance, this
total discounted utility is represented as

UADFD(P ) = m− c+ VADFD(E(γa1 |
1 + γ∗a1

(c)
2

)), (4.24)

UADFD(N) = m+ VADFD(E(γa1 |γ∗a1
(c)/2)), and (4.25)

UADFD(R) = VADFD(E(γa1 |1/2)). (4.26)
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4.6 Agent Communication

Without collusion or side-payments, agents do not have explicit incentives for sharing informa-
tion with other agents in our model. Cheap talk is non-binding signaling before a game that has
no direct effect on utility, but can affect the outcome when agents’ incentives are not negatively
correlated [Farrell and Rabin, 1996]. While cheap talk has no effect on the outcome of one-shot
prisoner’s dilemma games, we show how it is useful in our repeated game model.

Communication of observations between agents can reveal conflicting observations, and
communication of such information itself can be strategic under certain circumstances. If agent
a3 intentionally offers agent a1 incorrect information about agent a2, a1 may simply expect that
the change in γa2 is due to replacement. However, an accumulation of incorrect communications
of γa2 from a3 could indicate a replacement rate higher than γa2 ’s replacement rate. Given an
observation of a discount factor range, i, of a2 from a3, a1 would have a probability on the
truth of i, P (i), as

P (i) =
∫

γ∗i

fa2,Ia2
(T, x)dx. (4.27)

Note that a1 can only evaluate the quality of a communicated observation after making new
observations and evaluating the posterior distribution of discount factors. The initial evaluation
using the prior probability distribution is more of a test of believability.

Agents can use the quality of information given by another agent as a proxy for measuring
that agent’s discount factor. Agent a2 wants a1 to believe that a2 has a high discount factor
for future interactions, either to both play P with a1 (if a2 has a high discount factor) or fool
a1 into playing P so that it can play N (if a2 has a low discount factor). If a1 is in a game
against a3 using information given by a2, and a1 finds a2’s information to be incorrect, it may
assume that a2 was colluding with a3 via a side-payment. Assuming collusion, a1 may lower
its expected value of a2’s discount factor by assuming a2 and a3 are the same agent, or may
model more accurately if a1 has some information about the side payments. A simple but less
rigorous alternative is for an agent to sanction another for giving false information.

If agents offer each other side-payments for information about other agents, then strategic
interaction plays a role in whether and at what price an agent will purchase information from
another agent. Many models of interaction may be applicable. One model would be for agents
to bid based on information metrics of their distribution of observations, such as absolute
entropy or entropy relative to an announced distribution. For this model to work, an agent
would need to calculate its willingness to pay given the amount of information offered by the
other agents, based on what it expects to gain from the transaction. Another model would
be to align incentives by deferring agents’ side-payments of the information they received until
after the transaction takes place. As Crawford and Sobel [1982] have shown, when one agent
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has aligned incentives with another agent that has more accurate information, strategy plays a
major role in maximizing utility, particularly in conveying reputation information.

One model is for agents to communicate all information about other agents. If a3 commu-
nicates to a1 not just the expected value of a2’s discount factor, but every observation, then
a1 can better determine what observations to discard. If a1’s observations indicate that a2

underwent a discount factor replacement at a given time, a1 knows to discard a3’s observations
before that time. Similarly, a1 can discard its own observations earlier than a replacement
indicated by a3 provided a1 believes a3’s reported observations are true.

A succinct communication model is for an agent to ask other agents whether they would
trust a specific agent in a hypothetical situation. Consider a1 asking a3 whether a3 would
trust a2 in a1’s current game. Agent a3 can build its own reputation by answering correctly
or refuse answer if a3 does not have sufficient information. If a3 answers it would trust a2 for
the given transaction, a1 can make an observation that both a2’s and a3’s discount factors are
sufficiently high. However, if a3 answers that it would not trust a2, then a1 does not have
enough information to tell whether a2’s or a3’s discount factor is low. After performing more
transactions and receiving more recommendations, a1 can review the previous recommendations
to gain more information about the agents. If a3 replied it would not trust a2, but a1 later
learns that a2 had had a high enough discount factor, then a1 can make an observation of a3’s
discount factor was below that required to perform the given transaction. Similarly, if a3 had
lied that it would trust a2 even though a2 had a low discount factor, as mentioned earlier in this
section, a1 could assume the agents were colluding or sanction a3 by significantly reducing its
expectation of a3’s discount factor. We use the simpler sanctioning method in our simulation
results.

Three main communication behaviors emerge from parameterizations of our model. First,
consider the case when agents are regularly interacting with a significant portion of the popula-
tion and discount factor replacement is relatively low, denoted as a, a′ ∈ A : ra,a′ � λa. Because
agents’ discount factors are relatively stable and each agent is frequently encountered, agents
will easily be found out if they give false information. An example of two agents that undergo
frequent transactions is an agent that continually procures perishable food from a supplier. An
agent can incrementally combine evidence from other agents using Equation 4.27 to determine
the probability each observation is accurate.

Second, we consider cases where λa � 0 or λa � ra,a′ , without a large number of agents.
This represents agents’ discount factors being replaced so frequently that observations would not
matter. In such cases, our model is not applicable because determining an agent’s reputation
would matter little due to its short life.

Finally, we consider sparse agent interactions relative to the discount factor, expressed as
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a, a′ ∈ A : ra,a′ . λa � 1. This case exemplifies many business-to-business and business-to-
consumer interactions where purchasing happens frequently enough that reputation matters,
but not so infrequent that firms dramatically change between purchases. In these cases, agents
must frequently depend on accurate information from other agents if they are to have an
accurate estimate of another agent’s discount factor. However, misinformation in this case is
hard to detect a priori, and an agent is unlikely to have the opportunity to directly retaliate on
an agent that provided false information.

4.7 Simulation Results

We ran simulations with groups of 16 agents to validate that our model yields higher payoff for
agents with higher discount factors and to evaluate the impact of basic communication. Each
simulation consisted of 100 time steps and an agent replacement rate of .01 to reflect the mean
life of an agent. We randomized payoffs and interactions, but used consistent sets of agent
discount factors.

Prior to setting up the experiments, we examined the affect of the distributions of C, M ,
and W with respect to the minimum discount factor required for transactions to occur. Many
parameterizations yield results that are not particularly interesting. For example, exceedingly
low values ofW relative to C andM results in most agents in the buy role without a particularly
high discount factor playing N because patience for later payoffs is not rewarded in that case.
For simulation, we chose the parameterizations of uniform distributions of C ∈ [0, 5], M ∈
[10, 20], and W ∈ [80, 120] because they offered a full range of agents’ behavior.

We used two topologies to represent agent encounters for our experiments. One is a uniform
distribution with each ra1,a2 chosen from the range [0, 1]. The other is a randomly constructed
small world network. To construct the small world network, we connect two agents with en-
counter rates set to 1 and individually add agents to the network. Each new agent’s encounter
rates with every other agent are randomly chosen proportional to the sum of the encounter
rates of the agent to which it is connecting, relative to the sum of all encounter rates. In this
topology, each agent frequently encounters a small set of agents and occasionally encounters
another agent from outside of that set.

We chose four discount factor distributions to examine: uniform, all the same, 4th root
of uniform distribution, and 1 minus the 4th root of uniform distribution. The last two dis-
tributions allowed us to see the behavior of a group of agents where most have a high and
low discount factor, respectively, but with a couple agents on having discount factors on the
opposite end of the spectrum. The distribution with all of the same discount factors was to
determine whether agents behaved differently in a general population than of a population of
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Figure 4.4: Results of simulating 16 games with 16 agents with uniformly distributed encounter
rates.

similar agents.
Figure 4.4 shows an example of the overall trend that agents with higher discount factors

receive higher utilities which we found across our results. Each data point represents the final
utility of a given agent played with uniformly distributed rates of encounter. Those agents that
are most patient and have the greatest tolerance for risk are rewarded the highest. The trends
depicted remain prominent despite changes in the agents’ distribution of discount factors.

Even though our results from small world encounters had 4% more encounters than the
uniformly distributed encounters, the final utility of all agents was significantly decreased in all
scenarios. The number of times agents played N was almost the same between both topolo-
gies, but agents in the small world played P significantly less and R more. Agents protected
themselves more frequently in the small world due to the decreased sensitivity of negative ob-
servations that low encounter rates bring. While an agent traded primarily with the other few
agents that it encountered frequently in the small world, the number of encounters with more
rarely encountered agents is still significant.

Communication reduced the overall utility of agents with high discount factors somewhat,
as can be seen by the filled-in diamonds in Figure 4.4 when compared to the corresponding
open diamonds. In these results, we used the simple heuristic that an agent would commu-
nicate results whenever it had made four observations about an agent, following our simple
communication method outlined earlier in this section. The additional information gained by
communication reduced the agents’ speculative beliefs of other agents’ distributions based on
the maximum entropy distribution. For example, an agent with no a priori beliefs about an-
other agent’s discount factor or the distribution of discount factors would initially believe 1

2 .
However, we found that effective communication allows agents to better protect themselves in
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encounters with agents with low discount factors when large utilities are at stake.

4.8 Conclusions

We present a method for measuring agents’ discount factors and strategically using those dis-
count factors in stylized market interactions. Our models are rooted in trigger strategies. The
refined grim trigger strategies we use in our formulations of our model resemble tit-for-tat once
discount factor replacement is added. Trigger strategies are not only practical models of agent
interaction, but can be also used to construct some equilibria. The abilities in various popula-
tions of agent types that our model offers to protect, adapt, coordinate, and exploit are strongly
desirable traits in an effective multi-agent system [Vu et al., 2006]. By demonstrating a Bayes-
Nash equilibria of pair-wise reputation and building framework for strategic communication of
reputations, we have shown that measuring and modeling other agents’ discount factors is a
feasible and plausible strategic interaction model for building autonomous agents.
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Chapter 5

Evaluating Discount Factors in an

Online Market Model

Motivating Example: Online Market

An online auction is a practical motivating scenario for a trust system. As our running example,
we outline the general mechanics of this scenario to motivate our results and formally analyze
it in Section 5.1. The auction is continually cleared, with buyers choosing which sellers’ offers
to accept, if any. Exactly one buyer or seller moves at a time. The order of buyers’ and sellers’
turns are chosen from a stochastic process to simulate realistic market transactions, but each
agent gets one turn per unit time. Each agent’s goal is to maximize its expected utility and, to
account for time preference, is endowed with a privately known discount factor.

Sellers post or update offers to sell items. A seller’s costs are private but follow publicly
known probability distributions. Cost are initialized before the auction begins. An offer states
the asking price and the (true or exaggerated) quality of the item. We define quality as the
probability density function (PDF) that an item will irreparably fail as a function of time. The
expected lifetime of an item is its mean time to failure (MTTF). Section 5.1.1 considers the
cases where a seller can (1) only produce a fixed quality and (2) control the quality of its items.

Buyers see all current offers and choose which and when to accept. When deciding what to
purchase, buyers can see the seller’s offer as well as a history of “comments” by other buyers
about the seller’s discount factor, price, and quality. After each transaction, a buyer can post
a public comment on the seller. In our formal approach, a comment is a numerical observation
of one or more of quality, valuation, time, or discount factor. A comment is formulated as a
measurement or inequality, such as “I observed the good offered by agent a at price 5.29 to be
of a quality that held up for 1 week of use before breaking” or “agent a’s discount factor is
greater than 0.60.” Sellers can see what price and quality other sellers are currently offering
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and update their offers accordingly.
Each buyer has its own expected utility gain per unit time for having each additional item,

a willingness-to-pay per unit time. Buyers have a price sensitivity with respect to quality, based
on the expected useful life of an item coupled with the agent’s discount factor and willingness-
to-pay. When a buyer makes a purchase, it loses the utility of the amount of the purchase price
and gains utility for each unit time that the item is functional.

We note that because the seller controls the price, our model’s descending Dutch auction
style resembles Craigslist (http://craigslist.org) and the retail presence on eBay, where the
seller’s “minimum bid” is effectively the ask price. This is in contrast to the ascending English
auction commonly associated with consumer-to-consumer transactions on Amazon and eBay.
We choose to examine the seller-price auction because the analysis yields somewhat simpler
results and is therefore easier to discuss in the cases of interest.

5.1 Market Model Examples

This section illustrates examples of how discount factor may be measured and utilized with our
example online market. The formalization of the full complex model is beyond the scope of this
paper, and we leave extensions involving multiple buyers, sellers, and items simultaneously for
future work. We include these basic results to motivate our central thesis of the effectiveness of
modeling trustworthiness as discount factors. The first two involve typical trust settings. The
third and fourth show how agents can gain knowledge of discount factors outside of something
that would normally be measured as trustworthiness while contributing to the agents’ knowledge
of trustworthiness.

We focus more attention on measuring discount factors than on using them in decision
models, as the former has received considerably less attention whereas the latter has been widely
used [Dellarocas, 2005, Ely and Välimäkiz, 2003, Hazard, 2008, Jurca and Faltings, 2007, Saha
et al., 2003]. Benzion et al. [1989] measure the discount factors of people directly by asking
them specific questions. Although it is useful to determine an individual’s discount factors from
an economic perspective, such measurements may not work in a strategic setting. The literature
on measuring private discount factors in strategic interactions is rather sparse. To the best of
our knowledge, the following works represent most of what is currently known. The models
developed by both Rubenstein [1985] and Güth et al. [2004] yield equilibrium strategies for
bargaining between agents when the agents have private discount factors. However, both models
require the agents’ discount factors to be one of two discrete values. Smith and desJardins
[2009] measure the minimal upper bound of an agents’ discount factors, although their model
requires the assumption that agents only reason with one level of mutual information, rather
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than assuming agents’ actions are common knowledge.

5.1.1 Discount Factors and Production Quality

To demonstrate both how a seller’s discount factor can be measured and how a seller may use
its discount factor directly in decision making, we employ the frequently studied grim trigger
strategy [Axelrod, 2000], where an agent permanently stops interacting with another after a
bad interaction. This strategy is typical of some trustworthiness settings, particularly when
many other agents supply a substitutable alternative. For example, people may not return
after a bad experience at a restaurant or may not purchase a replacement printer from the
same manufacturer if their previous printer required frequent maintenance. Agents in these
settings would have preferred to have avoided these bad transactions in the first place.

Consider buyer b deciding whether to purchase an item advertised at a high quality from
seller s for some specific price. The seller will make π profit on a low-quality item, and π profit
on a high-quality item, where π > π. This means π/π − 1 is the percent increase in profit
by selling the low-quality item. Suppose s knows b communicates with a set of other agents,
B, that also buy from s, where B is common knowledge. If s is found selling items below
its advertised quality, buyers in B will avoid purchasing from the seller, causing the seller to
indefinitely lose a total of |B| · π utility worth of potential profit every time interval.

We assume b would prefer to not buy the item than to pay the current price for a low-quality
item. Buyer b can use its knowledge of the seller’s discount factor, γs, to evaluate whether the
seller will produce an item at the advertised high quality. If b believes the seller will produce
a high-quality item, then it should proceed with the purchase. The seller will produce the
high-quality item if it is more profitable, if

π > π −
∞∑

t=1

γt
s · |B| · π. (5.1)

In making its decision whether to purchase the item, b will also evaluate (5.1) using its
current knowledge of all of the values involved. If b makes the purchase and finds the item
to be of high quality, then b additionally learns that π/π − 1 < γs/(1 − γs)|B|. If the item
were of low quality, then the inequality operator would be reversed. Whereas b may not know
the value of π/π − 1, which is effectively the percent increase in profit, with some reasoning b
can still find a discount factor measurement. First, b can use a maximum likelihood estimator
based on any other information b has available to find the range in profit, similar to how s may
estimate the magnitude of B. Second, b can look at comments and feedback from other agents
in B to see what types of products and services were offered to previous agents. If the goods
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Figure 5.1: PDFs of discount factors given observations.

or services offered by s match, then it is likely that the ratio of profitability is the same, and b
can substitute any change of B.

If s is a typed agent, always producing high-quality goods, then buyers’ expectation of γs

will approach the highest possible value given the valuations involved. If the difference in profit
between a high-quality and low-quality item (π − π) is large, then γs will be observed to be
close to 1. And, a typed agent producing low-quality goods will attain a low γs.

Example 1 Suppose seller s is offering a high-quality item that cost it $4 at $5, but could
substitute a low-quality item that costs it only $1. Further suppose it is common knowledge that
if the product turns out to be of low quality, the one-time buyer, b, will tell three other agents
that each normally purchase one high-quality item per unit time. If b buys the item, then from
(5.1), the discount factor where s would be indifferent between offering high and low quality is
5−1
5−4 − 1 = γs/(1 − γs) · 3, yielding γs = 1/2. Agents observing this transaction would see that
b reported γs ≥ 1/2 if s provided a high-quality item and γs ≤ 1/2 if s provided a low-quality
item. Given no other information about s’s discount factor and using the maximum entropy
distribution (i.e., uniform) yields an expected value of E(γs) = 3/4 if s provides a high-quality
item, and E(γs) = 1/4 otherwise.

To illustrate how trustworthiness can be aggregated, consider another potential buyer, c,
reading a comment left by b of obtaining a high-quality item noting γs ≥ 1/2, and a comment
left by another buyer that γs ≤ 7/8. If c believes these comments, c believes γs ∈ [1/2, 7/8],
with an expected value of 11/16. Figure 5.1 illustrates the PDFs for this belief. Now, suppose
c is deciding whether to buy a different item from s for $10, and that s must decide between
producing a high-quality item at a cost of $7 or a low-quality item at a cost of $4. Buyer c will
only influence one other agent not to buy from s if it receives a low-quality item. By evaluating
and simplifying (5.1) as 10−4

10−7 − 1 > 11/16
1−11/16 · 1 yields 1 > 11/5. Because this inequality does not
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hold, c concludes s will provide a low-quality item and therefore it should not buy from s.

5.1.2 Discount Factor and Product Choice

Measuring a buyer’s trustworthiness can be important in a number of settings. If the buyer
does not pay after the seller delivers the item, then the best the seller can do is refuse to sell to
the buyer in the future and warn other sellers about the buyer. This sanctioning is the same
as discussed in Section 5.1.1, only with roles reversed. If collusion is policed in the system,
but imperfectly so, an untrustworthy buyer would be more likely to collude with other agents
because it heavily discounts the utility loss of being caught. Colluding buyers could extort a
seller into selling at low price because they could leverage their numbers to produce bad reviews
for the seller and thus reduce the seller’s future revenue. Whereas other agents may eventually
discover the collusion, a large number of bad reviews could still harm some of the seller’s future
revenue.

We investigate one subtle method of measuring buyers’ discount factors. We examine what
can be inferred about a buyer’s discount factor given its purchasing choice between different
items. Because a buyer’s valuation is private information, the results here do not give a direct
measurement of the buyer’s discount factor. However, the results give a constraint between
the buyer’s valuation and discount factor. These constraints can be used to refine existing
information about an agent’s valuations and discount factor.

Example 2 Suppose agent a purchases tires for a fleet of delivery vehicles. If a purchases tires
with a mean expected life of 5 years rather than tires with a mean expected life of 10 years for
an additional 80% higher cost, another agent b simply cannot infer that the agent has a low
discount factor. If b has a belief about a’s valuations or current financial situation, b may be
able to qualitatively infer that either a has a low discount factor, or a is currently in a difficult
financial situation, or some combination of both situations apply. Even though a’s actual state
remains ambiguous to b, b still knows more about a after having observed a’s choice.

From our motivating example, we assume that the only reliability information provided is
mean time to failure (MTTF), which we represent as q. The maximum entropy distribution,
assuming discrete time intervals, is the geometric distribution with the cumulative distribution
function (CDF) Q(t) = 1 − (1 − 1/q)t+1, where the probability that the item will fail at each
time step is 1/q. We represent buyer b’s expected utility gain from an item per unit time, that
is, its willingness to pay per unit time, as, wb. The buyer’s expected utility of purchasing an
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item k at price pk with a failure rate CDF of Qk(t), E(Ub(k)), can be represented as

E(Ub(k)) = −pk +
∞∑

t=0

γt
b(1−Qk(t))wb. (5.2)

Using a geometric distribution of Qk with mean qk thus simplifies to E(Ub(k)) = −pk +wb(1−
1/qk)/(1− γb(1− 1/qk)).

Whereas (5.2) determines a buyer’s utility for obtaining an item, it may also be used by
other agents to infer information about a buyer’s discount factor or willingness-to-pay. Consider
a buyer, b, deciding between two items: k1, at price p1 with an MTTF of q1, and k2, at price p2

with an MTTF of q2. Say, b purchases k1. If item k1 is universally superior to item k2, that is,
it is cheaper (p1 ≤ p2) and longer-lasting (q1 ≥ q2), then the only information gained by other
agents is that

E(Ub(k1)) > 0. (5.3)

This information can still be useful because it puts a constraint on b’s possible values for its
discount factor and willingness-to-pay. If some other agent, a, believes b’s discount factor to be
particularly low, then a can use this assumption to infer that wb . p. Alternatively, if a has
knowledge of b’s willingness-to-pay, a can use this knowledge to gain bounds on b’s discount
factor by solving Inequality (5.3) for the desired variable. In some cases, such as when an
agent has a high discount factor or a willingness-to-pay greater than the ask price, no further
information is revealed because the bounds are less restrictive than the domain of the variable.

Now, we consider what information b would have revealed to other agents if k1 was not
universally superior to k2. In this case, we know that E(Ub(k1)) ≥ E(Ub(k2)). Solving this
inequality for either γb or wb can yield zero or one values, and potentially more with distributions
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other than geometric. Each value is the end of a boundary within which b’s variable lies. Solving
for these boundaries may be generalized for b choosing between multiple items. By finding the
values at which b would be indifferent between each pair of items and then finding the range
where k1 yields the highest utility, another agent can obtain bounds on γb or wb. Figure 5.2
shows an example of choosing between three items, where if an agent knows that wb = 30, then
the agent gains the knowledge that γb ∈ [0.14, 0.80].

Because b knows its actions are monitored by other agents and b desires to have a perceived
discount factor greater than its own, b has an incentive to buy an item that makes it appear as
if it had a larger discount factor. Similarly, b may prefer to reveal a lower value for wb to sellers
in order to bring the price down to a lower value faster. Despite these incentives, purchasing
actions must be both credible and utility maximizing for b. Except in certain seemingly rare
situations, such as where excessive reliance on communication causes b to have an inflated
reputation, we have generally found that an agent’s optimal strategy is to play in a manner
such that other agents will measure its discount factor to be in a truthful range. In our models
and previous work [Hazard, 2008], the cost for an agent to over-inflate its reputation typically
exceeds the benefit of being able to exploit the reputation in the future, influenced by damage
that would be done to its reputation by being inconsistent.

5.1.3 Measuring Discount Factor By Price

A key benefit of using discount factors as trustworthiness is that further information can be
obtained in some settings that normally would not involve trustworthiness directly. Suppose
a seller, s, will be selling an item in our market model, but has uncertainty about what price
it can obtain. We examine what can be learned about a seller’s discount factor in a single
seller, single item, single impatient buyer market. This simplification yields a negotiation, and
if valuations and discount factors for both agents were all public knowledge, the agents could
agree on a price without this delay [Rubinstein, 1982].

Example 3 The website Craigslist (http: // craigslist. org ) is a good example of the sce-
nario we formalize in this section. If an agent is selling a used snowblower in the fair weathered
Los Angeles market, information on what price the market will bear would likely be scarce. The
seller may believe that a few people might be looking for a snowblower for a distant vacation
home in the mountains, for a prop in a movie, or just for spare parts. Using these beliefs, along
with the knowledge of what a new snowblower would cost to be shipped to the LA area, the seller
might start off at a moderately high price and slowly lower the price if no bids are received. The
rate that the seller drops the price can be an indication of the seller’s discount factor. Even
if the seller undergoes a significant valuation change, such as needing to sell the snowblower
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Figure 5.3: Optimal ask price schedule for a seller with different discount factors (0.40, 0.60,
0.80, 0.90, 0.95) with buyer’s willingness-to-pay distribution being exponential with mean 50.

because of an unexpected move to a smaller location, examining multiple observations of price
drop rates can provide information regarding the valuation changes.

Suppose we have one buyer with a willingness-to-pay of w, drawn from a probability dis-
tribution. Further suppose that either the distribution of w accounts for the buyers’ discount
factors or that the buyers have a low enough discount factor such that w is approximately what
they would pay. The seller knows its own discount factor, γs. The seller can update its asking
price once per unit time, its strategy being to price the item at σt at time t, and we denote the
complete strategy as σ = {σ1, σ2, . . . , σ∞}. The seller’s expected utility, Us(σ), can be written
as (for notational convenience, we set σ−1 to the supremum of the distribution of w)

Us(σ) = γ0
s · P (σ0 ≤ w) · σ0

+ γ1
s · P (σ1 ≤ w ∩ w < σ0) · σ1

+ γ2
s · P (σ2 ≤ w ∩ w < σ1) · σ2

+ ...

Us(σ) =
∞∑

t=0

(
γt

s · P (σt ≤ w ∩ w < σt−1) · σt

)
. (5.4)

The seller’s optimal strategy is that which satisfies argmaxσ Us(σ). Figure 5.3 shows results
of numerical solutions for the seller’s optimal ask price at each time given discount factors of
0.40, 0.60, 0.80, 0.90, and 0.95. In this example, the buyer’s willingness-to-pay distribution is
exponential with mean 50.

To find the seller’s optimal strategy analytically, assuming myopic buyers, we can view
each σt as an independent variable and maximize the expected utility in (5.4). We express
the distribution of the buyers’ willingness-to-pay by the probability density function (PDF),
v(w), and the cumulative distribution (CDF), V (w) =

∫ w
−∞ v(x)dx. Because the variables are

mutually independent, we can maximize (5.4) by setting ∀σt ∈ σ : dUs/dσt = 0. The initial
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case, t = 0, is separate from the general case yielding the equations for t > 0 as

0 =
dUs

dσ0

0 =
d

dσ0

( ∞∑
t=0

γt
s · P (σt ≤ w ∩ w < σt−1) · σt

)

0 =
d

dσ0
((1− V (σ0))σ0 + γs(V (σ0)− V (σ1))σ1)

0 =
d

dσ0
σ0 −

d

dσ0
V (σ0)σ0 +

d

dσ0
γsV (σ0)σ1 −

d

dσ0
γsV (σ1))σ1

0 =1− (v(σ0)σ0 + V (σ0)) + γsv(σ0)σ1

σ1 =
V (σ0) + v(σ0)σ0 − 1

γsv(σ0)
(5.5)

and

0 =
dUs

dσt

0 =
d

dσt

( ∞∑
t′=0

γt′
s · P (σt′ ≤ w ∩ w < σt′−1) · σt′

)

0 =
d

dσt

(
γt

s(V (σt−1)− V (σt))σt + γt+1
s (V (σt)− V (σt+1))σt+1

)
0 =

d

dσt
γt

sV (σt−1)σt −
d

dσt
γt

sV (σt)σt +
d

dσt
γt+1

s V (σt)σt+1 −
d

dσt
γt+1

s V (σt+1)σt+1

0 =V (σt−1)− (v(σt)σt + V (σt)) + γsv(σt)σt+1

σt+1 =
v(σt)σt − V (σt−1) + V (σt)

γsv(σt)
. (5.6)

We assume a uniform distribution between 0 and w with the CDF expressed as V (w) = w−0
w−0

and the PDF expressed as v(w) = 1
w . Applying (5.5) and (5.6), we find

σ1 =
2
γs1

σ0 −
w

γs1

, (5.7)

σ0 =
γs1

2
σ1 +

w

2
, and (5.8)

σt =
2
γs1

σt−1 −
1
γs1

σt−2. (5.9)

Applying recurrence relation techniques to (5.9), we introduce the exponential term variable

r and solve r2 − 2
γs1
r + 1

γs1
= 0 to find r =

1±
√

1−γs1

γs1
. We can then apply the two-term linear
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constant coefficient homogenous recurrence relation to get

σt = α1

(
1 +
√

1− γs1

γs1

)t

+ α2

(
1−
√

1− γs1

γs1

)t

. (5.10)

We can use the initial constants (5.7) and (5.8), to solve for α2 from σ0 = α1+α2 = γs1
2 σ1+ w

2

and σ1 = α1

(
1+
√

1−γs1

γs1

)
+ α2

(
1−
√

1−γs1

γs1

)
= 2

γs1
σ0 − w

γs1
as

α2 =
−α1(1−

√
1− γs1) + w

(1 +
√

1− γs1)
. (5.11)

If a seller has not sold an item at the current time, it must drop the price in order to have
any chance of selling the item at the next time. The seller will continually lower the price until
the item is at the seller’s willingness-to-pay. We set the seller’s willingness-to-pay or cost of
production to 0 for convenience (this may be simply added to all transactions). The seller’s
asking price therefore should be zero at infinite time. Using (5.10), we find α1 as

lim
t→∞

α1

(
1 +
√

1− γs1

γs1

)t

+ α2

(
1−
√

1− γs1

γs1

)t

= 0

α1 · ∞+ α2 · 0 = 0

α1 = 0. (5.12)

Now we can use α1 = 0 to find α2 from (5.11) as

α2 =
w

(1 +
√

1− γs1)
. (5.13)

By combining the results of (5.10), (5.12, and (5.13), we can now represent the optimal price
strategy as

σt =
w

(1 +
√

1− γs1)

(
1−
√

1− γs1

γs1

)t

. (5.14)

We have found this result to match our numeric results as shown in Figure 5.3.
Note that the optimal ask prices decrease exponentially over time based on the discount

factor at a constant rate; we have also found this numerically with an exponential distribution
of w. From this information, a buyer could predict a seller’s discount factor based on a small
number of asks. When not in steady-state, the seller will also need to model its payoff based
on its belief of the buyers’ beliefs of its discount factor in case any buyers erroneously believe
the seller’s discount factor is significantly higher or lower than it really is. Nevertheless, this
result provides a lower bound on a single seller’s discount factor. Cramton [1992] analyzes a
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Figure 5.4: Example PDFs of buyers’ willingness to pay for three buyers for a given distribution.

similar situation of delay in bargaining, except when the discount factors are publicly known
and valuations are unknown.

5.1.4 Single Seller Strategy With Multiple Buyers

To extend the seller’s optimal strategy to include multiple buyers we employ order statistics.
Order statistics provide the probability distribution of the nth ranked value in the distribution
of buyers’ willingness-to-pay assuming that there are N buyers. Appendix 7.2 lists the basic
order statistics formula and derivations for uniform and exponential distributions.

In the simple case where the seller only has one item, the seller only cares about the
buyer with the highest willingness-to-pay, because that is the first agent that will purchase
the item with descending prices. The seller has an expected PDF about the distribution of
buyers’ willingness-to-pay, v(w), and by order statistics knows the PDF of the highest ranked
willingness-to-pay, vwN (w), to the lowest ranked willingness-to-pay, vwN (w). By replacing the
distribution v(w) with the corresponding nth lowest willingness-to-pay distribution, vwn(w),
the seller’s optimal strategy can be found using the same manner as described in Section 5.1.3.
Figure 5.4 shows an example of the PDFs of buyers’ willingness to pay.

If the seller has multiple items, it would like to sell to each buyer at as close to the buyer’s
willingness-to-pay as the seller’s discount factor will allow. When the seller is decreasing the
prices of its items, the buyer with the highest willingness-to-pay will purchase the lowest cost
item once its price is low enough. If the price of an item is decreased such that the price is below
the willingness-to-pay of more than one buyer, then all such buyers will have equal probability
of obtaining the purchase due to the stochastic interaction. The remaining buyers will only
buy once the items are available below their willingness-to-pay, so the seller’s prices should be
non-increasing with respect to time. Given these points, a seller’s best strategy is to price all
of its items the same as it decreases the price.

We can now rewrite Equations 5.5 and 5.6 in terms of a set of N buyers. We define
Abuyer to be a set of integers indicating buyers sorted by willingness-to-pay, with the index of 1
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representing the highest willingness-to-pay and the index of N for the lowest willingness-to-pay.
Since we want to maximize the seller’s utility, we set dUs1

dσt
= 0 again, this time including all

sum over all buyers in the utility. The seller’s optimal pricing strategy thus follows

0 =
∑

n∈Abuyer

(
1− (vwn(σ0)σ0 + Vwn(σ0)) + γs1vwn(σ0)σ1

)

σ1 =

∑
n∈Abuyer

(Vwn(σ0) + vwn(σ0)σ0 − 1)∑
n∈Abuyer

γs1vwn(σ0)
(5.15)

and

0 =
∑

n∈Abuyer

(
Vwn(σt−1)− (vwn(σt)σt + Vwn(σt)) + γs1vwn(σt)σt+1

)
σt+1 =

∑
n∈Abuyer

(vwn(σt)σt − Vwn(σt−1) + Vwn(σt))∑
n∈Abuyer

γs1vwn(σt)
. (5.16)

The seller will need to reevaluate and change its optimal pricing schedule whenever a sale is
made, because that buyer will be removed from Abuyer and the seller has that more information
about the buyers.

5.1.5 Seller Strategy Against Multiple Sellers

The introduction of multiple sellers motivates each sellers to race to the lowest price in order
for the buyer to consider purchasing from the seller. Here, we will use M to denote the number
of sellers to differentiate it from the number of buyers, N . All single-round games where
M > N have a Nash equilibrium of all sellers offering an initial price of 0. This is typical of an
oversupplied market, where no sellers can charge for their goods because no buyers would buy
at any higher price.

When M ≤ N , the sellers must not only strategize about price, they must also account for
the probability a buyer will choose their item among equally priced items from other sellers.
The optimal strategy depends on the density of buyers’ on the distribution of willingness-to-
pay as well as the price schedule of the other agents. For example, consider two buyers and
two sellers. Here we will denote the buyer with the high willingness-to-pay, bH , as having a
valuation wbH

and the buyer with the low willingness-to-pay, bL, as having a valuation wbL
.

We will also denote the seller with the lower discount factor as sL and the seller with the high
discount factor as sH . Seller sL will initiate a price schedule that descends more quickly than
that of sH . Figure 5.5 illustrates the situation.

Seller sH ’s possible strategies include the following. First, sH could use its own discount
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Figure 5.5: An illustration of the optimal price schedule for sellers sH and sL competing
for buyers with high and low valuations, with expected the values for the buyers’ valuations
represented as dashed lines.

factor to guide its price schedule to target bL and ignore sL targeting bH . A second strategy is
for sH to use a close price competition against sL, with each agent continually offering lower
prices, with each having a 50% chance of winning bH by being the first agent to present a price
below wbH

. A third strategy is for sH to employ a starkly more aggressive descending price
schedule than sL, possibly undershooting both bL and bH , leaving sL with a probability of being
left with the other buyer. However, by directly competing with sL’s price schedule, if sH wins
bH , sH will not have gotten the full price compared to if sL were not in the market because of
the larger jumps in price cuts. However, suppose that sL and sH have both just offered an ask
price of x with x < wbH

, leading to the first purchase. If sH does not win bH and wbL
> x is

satisfied, then sH will only receive x instead of some value in the range of (wbL
, x] if sH had

initially chosen to use a price schedule based on its own discount factor.
Despite the complexity of the interactions between sellers, the optimal solution and Bayes-

Nash equilibrium is comparatively straightforward. Assume we are operating from the perspec-
tive of an agent sH that has just observed another agent, sL, which has put a low ask price
indicative of a low discount factor. First, we assume that sL will not change its price schedule
in response to observing sH ’s ask prices (we will revisit and challenge this assumption shortly).
Seller sH can project sL’s price schedule and figure out the probability that sL, if acting alone,
will win each buyer. The sum of these probabilities will be 1 regardless of assumptions and
actual values because M > N . From these probabilities, sH can find the probability that it
could win each buyer, n, after sL has sold its item; if sL has a probability P (sL sells to bn), the
probability that sH could sell to this buyer is 1− P (sL sells to bn). These probabilities can be
used to weight each term of the payoffs from Equations 5.15 and 5.16 as

σ1 =

∑
n∈Abuyer

(1− P (sL sells to bn)) · (Vwn(σ0) + vwn(σ0)σ0 − 1)∑
n∈Abuyer

(1− P (sL sells to bn)) γs1vwn(σ0)
(5.17)
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and

σt+1 =

∑
n∈Abuyer

(1− P (sL sells to bn)) · (vwn(σt)σt − Vwn(σt−1) + Vwn(σt))∑
n∈Abuyer

(1− P (sL sells to bn)) γs1vwn(σt).
(5.18)

By using Equations 5.17 and 5.18, sH can find the optimal price schedule if it chooses keep a
higher price than sL. In this case, sH keeps its price above that of sL, and so sL’s strategy is
unaffected by that of sH , so sL can operate optimally as if it were the only agent, affirming our
assumption of sH being able to ignore sL’s change in strategy.

Now we consider what happens if sH instead decides to compete with sL on price. In order
for this to be sH ’s optimal strategy, both agents would need to believe that wbH

� wbL
. By

entering a price competition, sH will always ask some ε less than sL’s most recent ask price. For
competing on price to be profitable, the expected utility of winning wbH

, even with the 50%
chance of success, must be greater than or equal to the expected value of obtaining wbL

. This
can be expressed as

1
2
P (sL sells to bH) · E(vw2(v)) > E(vw1(v)). (5.19)

Note that this inequality is an approximation because it does not account for the actual selling
price due to the rate that the price is dropped. This approximation may be made accurate
by subtracting the expected difference between sales price; those terms are omitted here for
readability.

The probability of sL selling to bH can be evaluated by finding the probability that sL’s price
schedule will descend fast enough to cover the valuations of multiple buyers, and the probability
that one of the other buyers will accept sL’s offer. This probability will always be greater than
1
2 in this case, because one of the two buyers will accept the offer. The more patient sL is and
thus the slower the descent of its price schedule, the closer to 1 the probability will be that the
buyer with the higher valuation will accept sL’s price.

Because each agent will be evaluating the same expression, albeit for the opposing agent,
neither agent will be able to rationally underprice the other without credibly having a lower
discount factor. Therefore, sH ’s choices are to either to enter a price competition or let sL

have a better chance of winning bH . However, the price competition will cut sL’s probability of
winning the high valuation buyer in half, which will increase the descent of sL’s price schedule.
This effect on sL’s price schedule must be taken into account when sH is deciding whether to
enter a price competition.

The distribution of buyer valuations and number of buyers has a major impact on Inequal-
ity 5.19. Given a patient sL, a uniform distribution satisfies the inequality as long as N > M ,
because the worst case scenario is the range of [0, w] with two buyers, E(vw2(v)) = 2w

3 and

92



E(vw1(v)) = w
3 , and the ratio decreases as the number of buyers increases. A uniform distri-

bution of buyer valuations will therefore never see direct price competition except when agents
have identical discount factors.

Distributions with longer tails tend to encourage direct price competition. The ratio of
E(vw1 (v))

E(vw2 (v)) for the exponential distribution fails Inequality 5.19 until 4 or more buyers are present,
again assuming a patient sL. The Pareto distribution, a power-law distribution, never satisfies
the inequality due to the high drop in the expected values of the order statistics. In such a long-
tailed distribution, the two agents would be in price competition except for rare situations when
all the buyers have a similar price and the agents have participated long enough to discover
that information.

Now, consider a third seller, s3, entering the market. The first two sellers can be in one
of two states, either sH has consistently higher prices than sL or they are engaged in a price
competition. If neither of the first two agents are engaged in a price competition, then, due to
Inequality 5.19, s3 will not enter a price competition and instead will also use the Equations 5.17
and 5.18 to find its optimal price schedule. This behavior will hold for the remainder of the
sellers.

On the other hand, if sH and sL are engaged in a price competition, then s3 must decide if
it will join the price competition or find its own price schedule targeted at buyers with lower
valuations. However, once bH is removed from the market, the remainder of the sellers will
be competing for the remainder of the buyers. To make the decision about whether a price
competition is profitable, we can generalize Equation 5.19 (using the same approximation for
readability here), given a set of agents currently involved in a price competition, APC , to

1
|APC |

P (∃a ∈ APC sells to bN ) · E(vwN (v)) ≥ E(Us1 | bN and seller in APC removed) (5.20)

Entering the price competition will again steepen the descent of the price schedule as set by
the agent with the lowest discount factor engaged in the price competition, which must be
accounted for in the probability that the winner will sell to the highest valuation buyer. The
effect on the price schedule is reduced with each additional agent entering the price competition,
as the expected value of winning goes from 1

|APC |σt to 1
|APC |+1σt.

If yet another agent joins the price competition after s3 with a discount rate lower than any
agent in the price competition, the new agent will effectively set the new price schedule, with
the other agents matching. Each agent will continually use any new information to reevaluate
its position and determine if Inequality 5.20 still holds. The price competition may continue
after one of the sellers and the buyer with the highest valuation both leave the market.
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5.1.6 Seller Strategy With Multiple Multiitem Sellers

To evaluate the optimal strategy with multiple sellers, each seller potentially having multiple
items for sale, the results of Sections 5.1.5 and 5.1.4 can be combined. We again assume more
buyers than items, otherwise the only Nash equilibrium becomes to price all items at 0. Because
determining the optimal strategy does not reduce to a simple closed form solution, we instead
present a process for arriving at the optimal strategy. We again assume myopic buyers.

Suppose seller s1 is looking to sell some number of items, Ks1 . The seller first examines
the other agents’ sell offers. If s1 knows that other sellers have additional yet unreported items
for sale but have not yet posted an offer, s1 should assume expected values for corresponding
prices for the additional items based on its knowledge of the other sellers. For each number
of items that s1 can sell in the range of k ∈ [0,Ks1 ], s1 must evaluate entering k items in a
price competition with the fastest descending price. For each of those possible combinations, s1
must then evaluate entering the remaining items in every possible combination of entering or
not entering price competitions with every remaining descending price, and repeat this process
for all price schedules. Given J other price schedules offered by other agents, this results in a
total of

(Ks1+J−1
J−1

)
evaluations, which includes the possibility of entering no price competitions.

To evaluate the optimal price schedule for those items not in a price competition, s1 can
compute the probability that each item will be bought by each buyer based on the other agents’
price schedules. Further, s1 must determine the optimal price schedules for items after price
competitions if they do not win in the price competition, based on the probability of not
winning the price competition. From these price schedules, s1 can derive the expected utility.
To determine the optimal price schedules, s1 can compute the probability of winning each
buyer and price goods according to multiitem section by using Equations 5.17 and 5.18, except
replacing 1− P (sL sells to bn) with P (s1 sells to bn).

We note that multiple price wars may be occurring simultaneously, with some price descents
steeper than others. For example, several sellers with low discount factors may be in a price
competition targeting the highest buyer, whereas several other sellers may be in a price com-
petition targeting a buyer with a lower willingness-to-pay with a more gradual price schedule.

5.1.7 Measuring Discount Factor By Delay

Like the sellers, each buyer has its own discount factor and is trying to maximize its utility.
This section also focuses on just one buyer and one seller. We model what the seller can learn
about an interested buyer’s discount factor and willingness-to-pay, assuming both are constant
over time, if the buyer does not purchase at the current asking price, but waits for the seller to
lower the price.
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A buyer’s utility, U(t) is a function of the time it accepts a seller’s offer of price σt. The
buyer’s willingness-to-pay, wb, and discount factor, γb, can be used to write its utility as

Ub(t) = γt
b(wb − σt). (5.21)

The buyer will have the opportunity to continually reevaluate its optimal time to accept the
seller’s offer, but the optimal absolute time does not change. This can be seen for some time
offset, x, as Ub(t+x) = γt+x

b (wb−σt+x) = γx
b γ

t
b(wb−σt+x). Because the comparative difference

between utilities at different times is scaled by the constant based on the time difference, γx
b1

, the
acceptance time that maximizes utility is the same regardless of when the buyer is reevaluating,
making the optimal strategy a subgame perfect solution concept.

When a buyer makes a purchase, the seller observes that at the time of purchase, T , the
buyer’s utility was the largest. Because the price schedule is strictly decreasing, the decisions at
T−1 and T+1 yield the tightest bounds. The corresponding inequalities are Ub(T ) > Ub(T−1)
and Ub(T ) ≥ Ub(T + 1). If the seller does not have any information on neither the buyer’s
discount factor nor the buyer’s utility, then the seller only observes a relationship between the
two. This observed relationship can be expressed as

wb − σT−1

wb − σT
< γb ≤

wb − σT

wb − σT+1
, (5.22)

or alternatively as
σT − γbσT+1

1− γb
< wb ≤

σT−1 − γbσT

1− γb
. (5.23)

The seller can use its beliefs of the distributions of w or γ along with (5.22) and (5.23) to obtain
a PDF of the opposite variable, as we will discuss in Section 5.2.

Competition brought by multiple buyers decreases the delays that buyers are willing to incur
to wait for reduced prices from sellers. For example, if two buyers are waiting for two sellers to
decrease their ask prices, and the buyer with the higher willingness-to-pay waits long enough
such that the price falls below the other buyer’s willingness-to-pay, then the item may be taken
by the other buyer. The first buyer must then wait until the seller with the higher discount
factor gradually brings its ask price down. Not only does the delay incur lost opportunity to
the buyer with the higher willingness-to-pay, but the seller with the higher discount factor will
use smaller price decrements and the said buyer’s optimal strategy may include paying a higher
price than the first item.

As the number of buyers increases in proportion to the number of items sold, the ability
of a patient buyer to successfully employ strategic delay decreases. Having more buyers means
that the difference between a buyer’s willingness-to-pay and the next highest willingness-to-pay

95



decreases, increasing the chance that a drop in price will bring the item within range of more
buyers. In the same way that an excess of supply pushes the price of items to 0, the limit as the
number of buyers goes to infinity is that the expected profit of buyers goes to 0. In this case,
the market is undersupplied, and even buyers with large discount factors rationally behave as
myopic buyers.

5.2 Aggregating Discount Factor Observations

Because our discount factor measurements 1) employ Jeffrey-like probability conditioning by
admitting overlapping observations that do not necessarily cover the full probability space and 2)
encompass the full probability space under the assumption that the measurement is accurate,
we can employ Bayesian inference interchangeably with the principal of maximum entropy,
obtaining the same results [Grünwald and Halpern, 2003]. This means we can use the principle
of maximum entropy to find agent’s initial uninformed beliefs, then use Bayesian inference to
update the probability distributions representing agents’ beliefs of others’ discount factors and
willingness-to-pay. These mathematical tools allow agents to aggregate information about other
agents’ discount factors and valuations from a variety of different measures, including those we
discussed in Section 5.1. We generalize the aggregation of beliefs depicted Figure 5.1 across
probability distributions and types of observations.

Given no a priori knowledge or beliefs about another agent’s discount factor, the maximum
entropy distribution is uniform on the range of [0, 1). Suppose agent s observes agent b perform
an action that would require b’s discount factor, γb, to be between 0 and 3/4 inclusive. The
cumulative distribution function (CDF)1 of b’s discount factor, as a function of discount factor
x, is Fγb

(x) = P (γb ≤ x) = x, yielding P (γb ≤ 3/4) = 1 and P (γb > 3/4) = 0. Using conditional
probability, the new CDF in the range of [0, 3/4] becomes Fγb

(x) = P (γb ≤ x|γb ∈ [0, 3/4]) =
P (γb ≤ x ∩ γb ∈ [0, 3/4])/P (γb ∈ [0, 3/4]) = 4x/3.

If agent s observes b perform an action, but s can only observe a relationship between b’s
discount factor and its willingness-to-pay rather than a direct observation of either, s can still
gain some information about both of b’s attributes. Consider the case in Section 5.1.7, where
the observed relation between the willingness to pay and discount factor follow an inequality.
We rewrite the relation γb ≤ (wb − σT )/(wb − σT+1) in a more general form to encompass
other possible observations, dropping the subscripts for convenience, as γ ≤ h(w). We use the
random variable H to represent a random variable on the range of h that is isomorphic to
the random variable of the agent’s willingness-to-pay. As long as the function h is monotonic,

1By standard definition, a CDF is a nondecreasing function with domain (−∞,∞) and range [0, 1]. If a
random variable’s domain is a subset of (−∞,∞), then the CDF is defined as a piecewise function to yield 0
below the random variable’s domain and 1 above the domain.
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we can map between the CDF of w, Fw, and the CDF of this transformation, FH , for some
willingness-to-pay of x using h as Fw(x) = FH(h(x)). The probability density function (PDF),
fH , may be found in the usual fashion as fH = dFH

dx .
Given the relationship γ ≤ h(w), agent s would like to update its beliefs about the observed

agent’s γ and w. We use the CDFs Fγ and FH to denote the current beliefs of γ and w

respectively, and the CDFs F ′
γ and F ′

H to represent the beliefs after the new observation has
been taken into account. By the definition of conditional probability,

F ′
γ(x) = P (γ ≤ x|γ ≤ H) =

P (γ ≤ x ∩ γ ≤ H)
P (γ ≤ H)

(5.24)

and
F ′

H(x) = P (H ≤ x|γ ≤ H) =
P (H ≤ x ∩ γ ≤ H)

P (γ ≤ H)
. (5.25)

Simplifying, we have

F ′
γ(x) =

∫ x
−∞ fγ(y) · (1− FH(y)) dy∫∞

−∞ fH(y) · Fγ(y)dy
and (5.26)

F ′
H(x) =

∫ x
−∞ fH(y) · Fγ(y)dy∫∞
−∞ fH(y) · Fγ(y)dy

. (5.27)

After observing an inequality relation between discount factor and a function of willingness-
to-pay, (5.26) and (5.27) indicate how an agent’s beliefs of another agent should be updated.
If the observation yielded an equality relation, such as in Section 5.1.3, similar results can be
derived by simply substituting equalities for the inequalities in the initial formulation, leading
to the use of PDF functions in place of the CDF (and 1 minus CDF) functions in (5.26) and
(5.27).

Example 4 Agent s is selling an item as described in Section 5.1.7. Buyer b has received
extremely accurate information about s from other buyers. However, s has no a priori knowledge
about b other than b’s willingness to pay follows an exponential distribution with mean of $1.00,
yielding Fw(x) = 1 − e−1·x. With no a priori knowledge of b’s discount factor, s assumes the
maximum entropy distribution, the uniform distribution, yielding Fγ(x) = x.

The seller’s initial asking price is $1.50. Given b’s knowledge of the seller’s discount factor,
b predicts that the seller’s next utility maximizing price will be $1.40. Just as s asks $1.50, b
purchases the item, because b would attain more utility by purchasing the item now at $1.40
than waiting for the price to decrease further due to b’s discount factor. The seller observes
the second half of the inequality expressed by (5.22) as discussed earlier in this section, with
σT = $1.60, and σT+1 = $1.40.
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Figure 5.6: PDF of an agent’s discount factor before and after an inequality observation.

By updating its knowledge via (5.26) and taking the derivative to convert to the PDF, s’s
belief of γb is expressed by the PDF fγb

(x) = 1.38398e0.1/(x−1), as shown in Figure 5.6. If
s makes another observation about b, s will also need to compute the updated PDF for b’s
willingness to pay, and use both of these functions and combine this with the new observation.

The aggregation methods presented in this section will work in many situations, as long as
the prior beliefs and observations follow the principal of maximum entropy. If noise and error in
signaling are introduced, the beliefs will need to account for the probability of error. If an agent’s
willingness-to-pay or discount factor can change via a certain process, then the distributions
must be recomputed as time progresses and the entropy must be increased according to the
uncertainty from the process of change.
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Chapter 6

Reputation Dynamics and

Convergence

6.1 Introduction

Many authors propose desiderata to motivate their trust and reputation systems [Huynh et al.,
2006, Kamvar et al., 2003, Zacharia and Maes, 2000]. However, we are unaware of a general
characterization of desiderata for reputation systems that are quantitative, objective, and appli-
cable across a wide range of domains. We present four desiderata, focusing on what quantitative
properties make one reputation system more effective than another. Devising widely applicable
metrics for trust is considered an important open problem [Barber et al., 2003] and is the focus
of this work.

The primary purpose of a reputation system is to handle cases of adverse selection and
moral hazard [Dellarocas, 2005]. Adverse selection occurs when agents have limited ability to
change, for example, if a peer on a file sharing network supports limited upload bandwidth but
wants other agents to believe that it may have ample upload bandwidth. In this case, other
agents want to learn which agents have favorable attributes (significant upload bandwidth) so
that they can choose agents with whom to interact. Moral hazard arises when one agent must
reduce its utility in order to increase another’s utility. An example of moral hazard is when
one agent buys an item expecting it to be at or above a certain quality, but cannot measure
the quality until after the purchase. Here, the seller would face the moral hazard of producing
a lower quality item to reduce its costs.

When dealing with rational agents in a pure moral hazard setting, the game-theoretic ap-
proach is to devise a folk theorem, possibly modifying the model to achieve desired equilibria.
The analogous approach when dealing with pure adverse selection is to use probability and
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statistics to determine agents’ types. Although these approaches are powerful in pure scenar-
ios, most real-world applications do not cleanly fall into one of the pure scenarios. Similarly,
a reputation system designed to prevent adverse selection may not work well when faced with
a moral hazard setting, and vice versa. A minority of approaches, such as that of Ramchurn
et al. [2009] and Smith and desJardins [2009], combine game-theoretic results with uncertainty
for specific settings.

Reputation is only meaningful if it can change over time to increase predictive accuracy in
cases of adverse selection and to incentivize agents to cooperate in cases of moral hazard. There-
fore, we approach reputation from a dynamic systems perspective. As our primary contribution,
we motivate and formalize the following quantifiable desiderata.

Monotonicity. Agents who would provide favorable interactions should acquire better repu-
tations than agents who would provide less favorable interactions. For example, a seller
who always offers high-quality items at a low price should have a better reputation than
an agent who produces defective items that it advertises as being of high-quality (and
thus sells at a high price).

Accuracy. Reputation measurements should be accurate regardless of prior beliefs. For ex-
ample, if a buyer incorrectly believes that a seller produces high-quality items, the buyer
should quickly learn an accurate reputation value for the seller.

Convergence. Agents’ reputations should converge quickly. For example, it is preferable to
be able to learn after a smaller number (rather than a greater number) of interactions
whether a seller offers high or low-quality products, regardless of past beliefs, provided
the seller keeps to its type.

Unambiguity. An agent’s reputation should be asymptotically unambiguous, meaning an
agent’s asymptotic reputation should be independent of any a priori beliefs about the
agent held by some observing agent. An unambiguous reputation system would, as the
number of interactions tends toward infinity, always yield the same reputation for a given
agent regardless of the specific interactions. Consider two otherwise identical buyers
(identical in their valuations for goods of a given quality, utility functions, capabilities,
influence over peers, and so on) initially disagreeing about a seller’s reputation. Both
buyers should converge to an agreement about the seller’s reputation after a sufficiently
large number of interactions, assuming the seller behaves steadily in the same manner
with each buyer.

Our desiderata apply to both adverse selection and moral hazard, with or without the propaga-
tion and aggregation of reputation or trust information. The measurements from the desiderata
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can answer a wide range of questions, such as whether agents would benefit from using a specific
system, how stable the system is, and how quickly agents can build up or lose their reputation.
Our desiderata evaluate reputation systems as they are situated in a given environment with a
given set of agents and their preferences (i.e. utility functions). A given reputation may perform
well with respect to our desiderata in one environment and poorly in another environment.

Rather than examine and compare reputation systems against a list of possible attacks, as
some researchers have recently done [Huynh et al., 2006, Kerr and Cohen, 2009, Kamvar et al.,
2003], we look at general dynamical properties of the system as affected by strategic agents.
Our desiderata are useful across many types of reputation systems, regardless of whether the
reputation system combines moral hazard with adverse selection, involves interactions in less
clearly defined environments, or how difficult it is to solve analytically. Both moral hazard and
adverse selection are important aspects of trust. However, most of the attention of related trust
and reputation literature has focused on adverse selection, and relatively little work has been
done evaluating trust and reputation systems with respect to moral hazard. We therefore focus
this chapter primarily on moral hazard to address this gap.

Throughout this chapter, we distinguish two roles that an agent plays in a reputation system.
An agent is a rater when evaluating others and is a target when it is being evaluated. An agent
may take on both roles of target and rater simultaneously, but for clarity, we refer to the agents
as target and rater in the context of the interaction being discussed.

We apply our desiderata to a diverse group of trust and reputation mechanisms from the
literature. Our desiderata require a utility model, so we have chosen reputation systems that
either explicitly define agents’ utilities or can be augmented with a utility without further
significant assumptions. In each case, we pair off a rational target against a rater as defined by
the specific trust or reputation mechanism. We primarily focus on the interaction between two
agents, but we examine a few larger settings.

We find that the desirable and undesirable behaviors vary across the mechanisms, validating
that our desiderata are granular enough to distinguish differences between models. The general
mechanism proposed by both Hazard [2008] and Smith and desJardins [2009] exhibits the most
favorable results of those studied when faced with pure moral hazard, although this mechanism
does not adapt to a continuous range of behaviors as easily as some other systems do. Moral
hazard was more prominently considered in the design of this reputation system when compared
to the others we examined, so it is not surprising that this reputation system performs best
with respect to our desiderata in a moral hazard situation.

We make an additional contribution in this chapter. In order to treat each model as a black
box, we present a common conceptual interface for reputation systems. This interface consists
of two functions reflecting the two fundamental features of a reputation system.
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An update function, used by a rater or central reputation system, which returns a target’s
new reputation (when participating in the reputation system under consideration) after
the target has performed a specified action.

A payoff function, which returns the reward that a target can expect (under the reputation
system under consideration) for performing a specified action given its current reputation.

In essence, each reputation system implements the above two functions. In our study we make
use of these functions as a abstract interface to uniformly incorporate the various reputation
systems.

We find that the main limitations of our methods are the computational complexity of
finding the optimal strategy for the strategic agent and applying the model to reputation
systems that are tightly coupled with complex interaction systems. The results of our desiderata
are sensitive to the environment and our desiderata require an explicit utility model for the
agents.

The remainder of this chapter is organized as follows. First, we discuss the related work in
comparing reputation systems in Section 6.2. We formalize the agent interactions and desiderata
of a reputation system in Section 6.3 and include a discussion on dynamical systems theory.
Next, in Section 6.4, we formalize our method of applying our desiderata. We describe a
basic interaction model with moral hazard in Section 6.5 and use that model to evaluate and
compare reputation systems from related literature. In Section 6.7, we discuss the strengths
and limitations of our desiderata, along with details of how they may be applied to different
systems. Finally, we present our conclusions in Section 6.8.

6.2 Current Methods of Evaluating Reputation Systems

The ART testbed [Fullam et al., 2005] is a domain-specific problem for the domain of art
purchases designed to test reputation systems. ART is useful for comparing reputation systems
in a situated environment. However, the ART testbed suffers from some limitations as a general
purpose test to compare reputation systems. One limitation is that the ART testbed does
not always align incentives between obtaining a good reputation and increased utility [Sen
et al., 2006]. The ART testbed also suffers from issues of ambiguity in agent valuations and
capabilities, and being limited to a small number of agents [Krupa et al., 2009]. The domain-
specific models in ART are both a strength and a limitation. The strength is that ART adds a
practical realism to the measure, but the limitation is that the results depend not just on agents’
reputation models, but also on how agents model their interactions and the environment outside
of reputation. Our methods are domain independent, isolating the dynamics of the reputation
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system.
Altman and Tennenholtz [2008] take an axiomatic approach to ranking systems. They prove

that, in a multiagent system in the context of aggregate ratings, independence of irrelevant
alternatives is mutually exclusive with transitivity. An axiomatic system can yield strong
proofs, but realistic models or models with complex interactions often preclude strong results
with such modeling due to intractability. Our desiderata treat a reputation system as a black
box, which extends its applicability into the realm of reputation systems that use complex
computations tailored to specific requirements.

Sybil attacks, that is, agents creating pseudonyms in order to artificially manipulate their
or others’ reputation, are a frequently studied attack on reputation systems. Resnick and
Sami [2007, 2008] use an information-theoretic approach to derive worst case bounds on the
damage an agent can wreak. Their method, like that of Salehi-Abari and White [2009], limits
the amount of influence an agent can wield, striving for resistance to manipulation. While
resistance to manipulation is not an explicit dimension in our desiderata. In order to manipulate
its reputation, an agent must perform actions to change its reputation from one that represents
its actual type to another that offers some advantage. If an agent’s behavior leads to those
kinds of reputation dynamics, then the reputation system would not perform well against our
desiderata. Further, the model proposed by Resnick and Sami does not account for rational
agents that include future rewards in their strategy, but rather focuses on Sybil attacks using
randomized actions. Conversely, our desiderata focus on temporally strategic agents.

Besides the aforementioned exceptions, the related literature on reputation systems typically
compares a performance measure, often utility, of agents under a specific set of defined attacks
for each reputation system. Two surveys indicate the widespread use of this technique. Jøsang
et al. [2007] enumerate attacks and other problems, as well as corresponding solutions in the
literature. Hoffman et al. [2009] compare reputation systems by which particular attacks their
systems address.

Of the attacks employed in the related literature, the most common are agents that behave
badly a random percentage of the time [Kamvar et al., 2003, Huynh et al., 2006]; build up a
reputation by behaving positively and then “spend” it by behaving badly [Srivatsa et al., 2005,
Kerr and Cohen, 2009, Salehi-Abari and White, 2009]; open new accounts to reset reputation
[Kerr and Cohen, 2009]; launch Sybil attacks [Kerr and Cohen, 2009, Kamvar et al., 2003,
Sonnek and Weissman, 2005]; collude with other agents [Kamvar et al., 2003, Sonnek and
Weissman, 2005, Srivatsa et al., 2005]; and change behavior based on the value of the transaction
[Kerr and Cohen, 2009]. In contrast, instead of devising attacks solely by intuition, we examine
the entire strategy space.

Some of the related work empirically compares more than one reputation system, but such
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studies comprise a small minority of the related work. Kerr and Cohen [2009] and Sonnek
and Weissman [2005] compare several systems across a wide range of attacks, having developed
reputation systems to address the weakness of others. Of the remaining literature that empiri-
cally compares reputation systems, many papers compare three or fewer other systems [Huynh
et al., 2006, Salehi-Abari and White, 2009]. We postulate that this is in part due to interop-
erability difficulties between the reputation systems and how some papers do not adequately
specify the relationship between valuations, performance, and reputation, thus requiring major
assumptions about each reputation system. We address this challenge by presenting a common
conceptual interface for reputation systems and discussing how some reputation systems may
be implemented using the interface.

General prescriptive desiderata have also been explored in related work [Dingledine et al.,
2000, Huynh et al., 2006, Kamvar et al., 2003, Zacharia and Maes, 2000] to guide interaction
design and compare reputation systems. Desiderata for trust and reputation systems are not
as straightforward [Dingledine et al., 2000] because trust and reputation are supplemental to
primary interaction mechanisms. A primary interaction mechanism is one, such as a market,
that affects agents’ utilities directly. In order for reputation to work, agents must be long lived,
ratings must be captured and distributed, and ratings from the past must guide future decisions
[Resnick et al., 2000].

6.3 Reputation Dynamics

We represent the attributes of an agent, that is, its type including utility functions, valuations,
abilities, and discount factors, as θ ∈ Θ. An agent may know its type and may keep aspects of
their type as private information. The set of all possible agent types, Θ, is dependent upon the
system under study. We make no specific assumptions about the space of Θ and simply use θ
as a parameter, treating the internals of the reputation system as a black box.

We make no assumptions about how or whether an agent’s type can or cannot change over
time. When evaluating a reputation system, we hold agents’ types constant only to measure
the reputation system itself at a point in time. If an agent’s type changes faster than the
reputation system can measure the new type, then the reputation system will be unable to offer
useful information about the agent. A reputation system that performed well with respect to
our desiderata would yield reputations that correspond to the agent’s current type, even when
the type is changing.

The main purpose of a reputation system is to increase the accuracy of beliefs each agent
has about each other agent’s type. An agent’s reputation is a public projection of θ, reflecting
the beliefs of other agents about it. This paper focuses on how an individual rater would assess
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a given target, and how that rating would affect the target’s ability to gain utility in the future.
We use the term reputation because in our analysis it provides the elements of what would be
the target’s reputation. We denote an individual rater’s belief of a target’s type generically as
r ∈ R. We emphasize that whereas r may include information aggregated from the system or
other agents, r is the reputation of a target as viewed by a single rater. The domain of r, R,
is defined by the reputation system under examination. The domain may be as simple as a
nonnegative scalar or as complex as the complete set of possible interaction histories with all
details. For the formalisms in this paper, we assume R to be a normed metric space [Goffman
and Pedrick, 1983], whose norm function takes (nonnegative) values that represent the expected
utility of an ideally patient strategic agent, as we describe in Section 6.3.3. However, all of the
metrics and results may be applied using their discrete counterparts. We use the discrete
methods when evaluating some existing reputation models.

A target’s reputation is computed by measuring outcomes of direct interactions and by
obtaining and aggregating other raters’ experiences and beliefs. The manner by which a rater
updates its ratings of a target drives the dynamics of the reputation system. If a rater a rates
a target b as rt at time t, then after a and b interact at time t + 1 (or a learns something
about b from another rater), a will rate b as rt+1. For example, suppose a currently believes b’s
reputation to be rt, that b sells high-quality products. If a purchases a product from b at time
t + 1 that turns out to be of low-quality, a updates its belief of b’s reputation to rt+1, that b
sells low-quality products. Here rt+1 < rt. We use r′ to indicate the rating after an action or
transmission of information has occurred, which is synonymous with rt+1 in the case of discrete
time.

6.3.1 Constructing the “Next Reputation” Function, Ω

The idea of this paper is to evaluate reputation systems using a consistent methodology as
follows. Given a reputation system, first determine the Ω function that maps an agent’s current
reputation to its next reputation. Once Ω is defined, evaluate properties of Ω to understand key
properties of the reputation system, especially with regard to its dynamism and convergence
when faced with a rational target.

The target chooses how to behave given the environment, its own type, and the specific
reputation system employed. The idea is that the target would behave a certain way, taking its
current reputation into account when evaluating its decision. This behavior would cause the
rater to assess the target a certain way. Based on the specific reputation system, the rater would
adjust the reputation of the target appropriately after an observation or new information. Hence
the target’s reputation would be mapped from its pre-action value, r, to its post-action value,
r′, based on the target’s type, θ, the parameters of the interaction, g ∈ G, the environment,
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ψ ∈ Ψ, and the reputation system, ξ ∈ Ξ. To capture the above intuitions, we define the
function Ω : Θ × G × Ψ × Ξ × R 7→ R that represents how the reputation of a target changes
after an interaction. The target’s decision process is fully captured within the inputs to Ω.

To enable uniformity in assessing different reputation systems, we assume that the rater
is rational and patient, and performs the (typically nonstrategic) actions as prescribed by the
reputation system under examination. This means that a rater does not lie about reputations
unless it is part of the process of the reputation system being examined. For simplicity, we
consider the rater’s utility function as a parameter of the interaction. The rater’s utility func-
tion is largely governed by the payoff function, which is an input to our desiderata, either as
prescribed by the reputation system, or as modeled from the interaction environment, or as is
used by the actual raters in the system. This is clearly an idealization because in most settings
the raters are not strategic agents. However, the idealization systems yields baseline measures
of quality and enables us to compare reputation systems.

When making an observation, a rater may also pass information to other agents, either
directly or through a centralized mechanism. An agent’s reputation can change with respect to
a given rater without a direct interaction. Other than evaluation with a couple of reputation
systems in Section 6.5.4, we focus on interactions between two agents. Therefore, for clarity
and brevity, we do not explicitly model asynchronous agent communication in our formalism.
We leave this to be handled by the target’s utility function as a change to the environment or
as collapsed into an update to the target’s reputation with respect to other agents.

Because a target’s type includes the target’s utility function and decision model, the target’s
action can be computed from its type and the other parameters to Ω. Therefore, Ω does not
require a parameter for the target’s action.

A target’s decision model must include all actions available to the target. The actions
depend on the interaction model employed to evaluate the reputation system. Examples of
actions are whether to pay another agent, what quality of item to produce; whether to close the
current account and open a new one to reset the agent’s reputation; whether to lie when rating
another agent; and whether to open pseudonymous accounts controlled by the target itself to
manipulate its own reputation (known as Sybil attacks).

Deciding which parts of a reputation system belong in the Ω function and which parts belong
in its parameters is fairly straightforward. Anything that is agent-specific, such as valuations,
capabilities, initial beliefs of others’ reputations (biases), and discount factors should be an
attribute of θ. Anything that is common or fixed across all agents, including the processes that
define costs and interactions, can be incorporated in the environment, ψ. Attributes which may
change from one interaction to another should be specified in g, and the attributes’ domains
should be specified by the environment. The mechanisms of the reputation system itself should
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be incorporated into the Ω function.
Throughout this paper, we focus on the process of matching agent types to reputations and

how an agent can strategically manipulate a reputation system. When evaluating reputation
systems and describing our desiderata, we hold the environment, interaction, and reputation
system constant. As the other parameters are held constant, we assume all else remains equal
across these interactions, such as the agent relationship topology, valuations, payoffs, game
parameters, and probabilities. Our desiderata treat Ω as a black box. For brevity and clarity,
we therefore omit the parameters held constant and write a target’s reputation update after
the target makes a decision as r′ = Ωθ(r).

6.3.2 Fixed Points and Reputation Functions

Because reputation systems are supposed to accurately measure targets’ reputations, a desirable
reputation system should yield stable reputations when the targets themselves remain stable.
For example, a desirable reputation system should recognize a seller that provides a good
product at a low price with a good reputation. Conversely, an undesirable reputation system
would be one where a good seller might receive a good or bad reputation only because of luck or
strategic reputation manipulation by other agents. An agent’s reputation should follow its type,
meaning that a stable agent’s reputation should arrive at a fixed point, ideally corresponding
to its type.

A fixed point of a function is where the output of the function is equal to the input. Fixed
points are a cornerstone of dynamical systems theory [Devaney, 1992]. The properties of fixed
points, such as whether and how they attract or repel, govern the dynamics of systems that
involve feedback. A reputation is a fixed point if r = Ω(r), which means that if the reputation
were to take the exact value of r, the target’s reputation would remain at the same value after
subsequent interactions in an unchanging environment.

The set of fixed points of Ωθ is {r ∈ R : r = Ωθ(r)}. We define the function χ, which yields
the stable fixed point, if one exists, of a reputation system for a target of type θ, as

χ(θ) = lim
n→∞

Ωn
θ (rinitial), (6.1)

where Ωn
θ means that the function Ωθ is iterated n times. χ(θ) depends on rinitial, which is the a

priori belief that a rater has of a target, given that the rater has no information about the target
other than the fact that the target exists. The rinitial value is explicitly defined in some systems,
and in others it can be assumed to be the expected value over the probability distribution of
possible reputations. For example, Sporas defines rinitial to be 0, the worst reputation in the
domain of r ∈ [0, 3000] [Zacharia and Maes, 2000]. However, the raters may have differing a
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priori beliefs or have misinformation about the targets, leading to differing initial reputations.
The desiderata of Convergence and Unambiguity, described in Section 6.4, address these
challenges by saying that a reputation system should ideally have only one fixed point and the
reputation should converge toward that fixed point.

In some reputation systems, the limit expressed by χ(θ) may not exist. This can be caused
by a lack of fixed points, particularly if the domain of possible reputations includes reputations
which are impossible to attain. An example of an impossible reputation is when Ωθ contains
discontinuities with sufficiently large gaps, such as a fixed point that exists at a rating value
of 3.5 out of a maximum of 5 when the rating system only permits integer values. The limit
expressed by χ(θ) may also not exist if the reputation system has a repelling (unstable) fixed
point and the reputation never converges to single value. When a target’s reputation oscillates
around a single value (i.e., the reputation system is Lyapunov stable with a periodic, toroidal,
or chaotic orbit), we can use that fixed point as the value for χ(θ) to apply our other desiderata,
noting the caveat that an agent’s reputation will never reach the fixed point, only approximate
it. A reputation system could conceivably have multiple fixed points around which a strategic
target’s reputation will orbit. The appropriate value for χ(θ) in this case is unclear and a
marked weakness of the reputation system, but we have not encountered this behavior in any of
the reputation systems we examined. We further examine repelling fixed points when discussing
the Convergence desideratum in Section 6.4.3.

Noise in the environment or stochastic agent strategies can also prevent a reputation system
from converging to a fixed point. However, given enough Monte Carlo simulations and anal-
ysis, the expected values, moments, and statistical significance can all be propagated through
our framework and desiderata. Rather than finding a fixed point, the result will be a station-
ary stochastic process. For each interaction step, the target chooses its action and then the
rater rates. Regardless of whether the rater’s observation was correct, the target would have
performed the same action because of its future expected behavior. The noise in the rater’s
observation creates a region about Ωθ where the agent’s next reputation may lie. When noise
is present, the expected value of Ωθ, E(Ωθ), can be used as the next reputation function.

Figure 6.1 shows an example “cobweb” diagram as used in dynamical systems theory [De-
vaney, 1992] for a reputation system with R = [R,R] ∈ <. Because we apply cobweb diagrams
to reputation systems throughout this paper as a basis for discussion, we now briefly describe
how to read such diagrams. For simplicity in graphically illustrating concepts, we focus on real
scalar reputations and real scalar projections of nonscalar reputations throughout this paper,
with R representing the worst possible reputation and R representing the best possible repu-
tation. The bounds of possible reputation values depend on the reputation system and need
not be finite. For our discussions of reputation systems with real scalar values, an unbounded
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Figure 6.1: Dynamics of a reputation system. The solid horizontal and vertical lines indicate
the path of the reputation along the dashed line.

maximum reputation means R =∞.
In our application of cobweb diagrams, the horizontal axis represents the target’s current

reputation over the domain of possible reputation values. The vertical axis represents r′, with
the dashed line representing the target’s next reputation after performing the action as governed
by its type, Ωθ(r). The diagonal line represents unchanging reputation and helps identify fixed
points. A fixed point exists wherever an Ωθ function intersects the diagonal line.

Figure 6.1 shows two starting points to illustrate how the reputation changes over time.
Suppose a target has a bad reputation, as indicated in this illustration as a low value where
the stair-step line starts on the bottom left. What constitutes a bad reputation depends on the
specific reputation system (and the associated decision model of the targets), but generally we
say a target has a bad reputation if another rater believes the target will likely offer poor-quality
products or otherwise behave in an undesirable fashion (we return to this point in Section 6.3.3).
The target’s subsequent reputation, that is, the target’s reputation after performing its next
action, is the value on the dashed line above the horizontal position indicating the target’s
current reputation. This value is then used as input for the next interaction. The target begins
with reputation r1 and its strategy leads it to perform actions that lead its next reputation to
be calculated as r2—and so on, through the series of steps in the diagram. We can find each
successive reputation by moving horizontally to the diagonal line and then moving vertically to
the new location on the dashed line. In this example, the reputation converges to the (only)
fixed point marked by χ on each axis. If the target’s reputation somehow becomes higher
than the fixed point in this graph, the strategic target would “expend” a small amount of its
reputation, for example, by providing poor service. As a result, the target’s reputation would
be lowered to lie below the fixed point. However, once the reputation is below the fixed point,
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Figure 6.2: An ideal reputation system.
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Figure 6.3: A good reputation system.

the target would behave nicely and continue to rebuild its reputation back up to the fixed point.
Then it would expend it again, and so on.

Figure 6.2 depicts an ideal reputation system. The horizontal line represents the ideal case
as expressed by Ωθ(r) = χ. This represents an ideal reputation measurement system because
the reputation is measured accurately in one shot regardless of what the target’s previous
reputation was. This ideal case is only useful if χ depends appropriately on θ—in other words,
if χ accurately reflects the type of the target. A reputation system that always returns the same
reputation regardless of behavior may be perfectly precise, but it would be neither accurate nor
useful.

The dashed line labeled “good” in Figure 6.3 represents a reputation system that converges
to a fixed value regardless of other raters’ previous beliefs. Targets whose reputations are greatly
undervalued build their reputations slowly, whereas targets with overly inflated reputations
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slowly converge on an appropriate reputation without their reputation values bouncing around.
These dynamics may be observed by using the same stepping method as described for Figure 6.1.
Such a reputation system might be indicative of an e-commerce setting where targets with poor
reputations charge low prices for decent-quality products and, as they build up their reputation,
they begin to charge more for their offered level of quality. In this reputation system, if the
target’s reputation is overinflated, it may take advantage of the situation by possibly lowering
the quality of its product slightly or raising the price, until it achieves its equilibrium fixed
point reputation.

6.3.3 Agent Behavior

The key concepts in this paper, particularly the desiderata introduced in Section 6.4, directly
apply to any type of agent decision model. One example of a decision model is an agent that
plays strategies based on a stochastic process. Another example is of a malicious agent whose
utility function increases with the utility loss of another agent. We primarily focus on rational
agents, though other agent types may be substituted in computing the desiderata. We discuss
other agent types and distributions of fixed agent behaviors to Section 6.8.

When moral hazards exist in an interaction setting, strategic agents can be a major threat
to a reputation system. A strategic agent will do whatever actions lead toward achieving a
goal, and would thus exploit any mechanism or manipulate its reputation if doing so helps
achieve the goal. A rational agent is a type of strategic agent that evaluates all possible future
actions and payoffs, which often must be approximated due to uncertainty and computational
complexity, then chooses the immediate action that will lead it to the largest total payoff (we
discuss details of this for our particular experimental evaluation in Section 6.5.1). Although
the resilience of a reputation system against strategic agents indicates how well the reputation
system may fare in an open real-world setting, much of the related literature on reputation
systems does not discuss strategic agents. Of the papers that do discuss strategic agents (e.g.,
Kamvar et al. [2003]), only a minority formally model strategic agents (e.g., Jurca and Faltings
[2007]). A rational agent may maximize its expected utility over its expected lifespan or use
intertemporal discounting. Thus a rational agent’s Ω function is the path of reputation that
maximizes its utility.

To consistently quantify the comparison of reputation values in relation to agent types, we
focus on the case when a target is faced by an ideally patient strategic (IPS ) agent. We define
an IPS agent as a rational agent that is indifferent to the time of when a specific utility change
will occur.

Our motivation for considering IPS agents is as follows. Since the idea of reputation is to
help select agents for future interaction based on their expected future behavior, it is natural
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that we rate targets in a manner that places substantial weight on the future utility of the rater.
Specifically, if agent a is interacting with an impatient agent b, then a may perform actions
(that affect b) that would be considered socially detrimental to a patient rater. For example,
consider two agents in a situation where they can gain utility only by cooperating and offering
each other favors. Agent a might not provide a favor to b if a believes that b is not patient
enough to return a favor to sustain a mutually beneficial long-term relationship [Hazard, 2008].
In this case, any raters (or centralized rating mechanism) should not necessarily observe a as
being impatient or having a low reputation because a is simply protecting itself against b. If b
were measuring the reputation of a as the target, b would be unable to distinguish between a
myopically greedy target and a target that was simply protecting itself against b’s behaviors.
By measuring a target against an IPS rater, we can ensure the target does not need to apply
any “self-defense” measures because the target has perfect knowledge that the IPS rater will
not attempt to take advantage of it for short-term gain. Further, by definition, an IPS agent
values a longer running good reputation more than a less patient agent.

A patient rater is also more useful for comparing reputation values than an impatient rater
because a patient rater generally can differentiate a larger possible range of behaviors. This
notion is supported by the economics literature (e.g., Fudenberg and Levine [1992]). Suppose b
is a reference agent, a rater by which we are measuring a property of target a. If b is impatient,
then b would attempt to take advantage of a whenever doing so offered a large immediate payoff,
regardless of a’s type and behavior. Conversely, if b is ideally patient, then b’s behavior will
reflect b’s belief of a’s type, providing a measurement of a’s type.

Suppose rater b is rational and is interacting with a target a that has type θa. Rater b
maximizes its total utility, Ub, by controlling its strategy, σb, which is a set containing a specific
action at each time t, σb,t. At each time step, b receives utility u(θa, σb,t), which is a function
of b’s strategy, b’s type, and a’s type, from which a’s optimal strategy may be derived. For an
IPS rater, the function u should be chosen to represent typical agents in the system, that is, to
represent average valuations and capabilities, or be endowed with capabilities and valuations
the designer feels represent a good benchmark for the system. In this paper, we use the same
valuations across all agents, including IPS agents.

Definition 4 We define an ideally patient strategic agent ( IPS agent), b, as having an infinite
time horizon such that b maximizes its average expected total utility, E(U b(θa)), as a function
of any agent a’s type, θa, as the time horizon, represented by the discount factor γ, goes to
infinity as

E(U b(θa)) = max
σb

lim
τ→∞

1
τ

τ∑
t=0

uθb
(θa, σb,t) = max

σb

lim
γ→1

(1− γ)
∞∑

t=0

γtuθb
(θa, σb,t). (6.2)
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We use an IPS agent’s utility function, given an environment, interaction, and so on for
ordering agent types by preference. If an IPS rater b prefers target a to target c, that means
E(U b(θa)) > E(U b(θc)). In the case of simple favor transactions with pure moral hazard, the
IPS rater prefers targets with higher discount factors because such targets may yield higher
payoffs. For example, the IPS agent may achieve higher payoffs with a patient agent via a
trigger strategy, where both agents would follow some schedule of actions and be punished for
deviation [Axelrod, 2000], because a patient agent would be willing to sacrifice short-term loss
to achieve the long-term gain from the schedule of actions. When agents offer products of
differing quality for differing prices with pure adverse selection, the IPS agent prefers agents
whose products maximize value over time.

We define the IPS agent’s utility function to be the norm function for the metric space
comprised of agents’ reputations. Thus, if we say that one reputation is better or higher than
another, this means that it provides a larger expected utility value to an IPS agent. If the utility
function’s range includes negative utilities, the utility function may generally be translated to
the nonnegative domain, for example, by adding a constant positive value.

Evaluating the average expected total utility of an IPS agent is not necessarily always an
easy task. Numerical evaluation methods are useful for approximating the limits. Because the
process of backward induction generally does not apply to infinite horizon games, finding the
expected utility as γ → 1 is a viable approximation as long as the set of interactions is small
enough that searching through enough plies of interactions is tractable.

6.4 Reputation System Desiderata

Reputation systems may be useful and effective even if their behaviors are not close to ideal.
This section examines what makes one reputation system more desirable than another and what
can render a reputation system ineffective. The results of each desideratum are highly dependent
upon the interaction environment and utility functions. Therefore, reputation systems must be
compared per environment, as a given reputation system may work well in one environment
with one set of utility functions and poorly in another.

6.4.1 Monotonicity

Consider the line labeled good in Figure 6.3. The strategic target would eventually attain its
fixed point reputation. However, if Ωθ yields similar curves for all θ, a rater would not be
able to distinguish among different targets based on variations in their reputation because they
would all end up with the same reputation value. This may be acceptable when the target
has an extremely favorable type, but if other targets’ types yield the same structure, then a
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Figure 6.4: Parametric plot of E(U(θ)) and u(χ(θ)) with respect to θ.

strategic target may be able to gain a better reputation than it deserves. This is not to say that
a system in which all targets achieve a good reputation is necessarily bad. A mechanism that
incentivizes targets to always behave in a socially beneficial manner, regardless of their type,
can be desirable. However, if target a has a better reputation than target b, then a trustworthy
agent c should expect a to behave at least as well as b in interactions, all else equal, regarding
c’s own utility. Relating this concept back to the ideal reputation system in Figure 6.2, the
horizontal line representing target a’s type would be at a more desirable reputation value than
that of target b’s type.

One reputation is better than another if, with all else equal, the rater expects greater utility
interacting with a target with the better reputation. For an IPS agent, c, entering a relationship
of repeated interaction with agent a, this utility is a function of the other agent’s type, θa,
E(U(θa)). A regular rater, however, would not know a’s type, but only its reputation, and would
only evaluate a single transaction. We write a rater b’s utility of entering an interaction with a
as u(χ(θa)). The function u is the payoff function that yields the value of a single transaction
for a given reputation, which is a property of the reputation system under examination.

Figure 6.4 shows how an IPS agent’s utility changes with respect to the fixed point reputa-
tions of a one-dimensional agent type. In this example, the IPS agent would not interact with
unfavorable agent types because they would try to reduce the IPS agent’s utility for their own
gain. For some values of θ, an agent may enter a mutually beneficial relationship with an IPS
agent, with more favorable agents bringing greater utility to the IPS agent. If this parametric
plot were not monotonic, an agent with a high reputation would have a lower expected utility
to an IPS agent than an agent with a lower reputation.

Desideratum 1 Monotonicity: If, to an IPS rater c, target a’s type is preferable to target
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b’s type, then a’s asymptotic reputation should be greater than b’s reputation. More formally,
a reputation system is monotonic if ∀θa, θb ∈ Θ : E(U c(θa)) ≥ E(U c(θb)) ⇒ u(χ(θa)) ≥
u(χ(θb)). However, if, c is indifferent across all agent types, that is, ∀θa, θb ∈ Θ : E(U c(θa)) =
E(U c(θb)), then the reputation system is nondiscriminatory, a generally undesirable subset
of the otherwise desirable monotonic property.

If a reputation system is monotonic, then this means that the expected benefit an IPS agent
would receive from another agent can be predicted by the agent’s reputation by comparing
reputation values, as measured by the utility and agent decision functions. This is important
because it means that the reputation system is successful in predicting an agent’s behavior, and
so other agents do not need to perform expensive computations to extensively evaluate all data
external to the reputation system to attempt to predict an agent’s future behavior.

6.4.2 Accuracy

As in Figure 6.2, an ideal reputation system would enable a rater to assess a completely unknown
target’s reputation perfectly after one interaction. The closer Ω is to a horizontal line for one-
dimensional reputation measures, represented by r′ = χ, the lower the error is between the
target’s current reputation and the reputation fixed point. We define this error on the domain
of possible reputations, R, as follows.

Definition 5 We define reputation measurement error, ε ∈ [0, 1], at some reputation r for a
target of type θ as the distance between a new reputation Ωθ(r) and the asymptotic reputation
χ, normalized with respect to the maximum distance between any two reputations, as

εθ(r) =
||χ(θ)− Ωθ(r)||

maxx,y∈R ||Ωθ(x)− Ωθ(y)||
. (6.3)

We can aggregate the reputation measurement error into the average error for a given agent
type. Agents or reputation systems may have biases. Systematic or a priori biases may be
known or unknown with respect to the reputation system or agents involved, and if they are
known, they may be used to weight the magnitude of error by the probability of the belief
when determining the average error. However, for generality, we make minimal assumptions by
taking the maximum entropy approach and using a uniform distribution to weight all possible
beliefs.

Definition 6 We define average reputation measurement error (ARME), E(εθ) ∈ [0, 1], as
the expected value of reputation measurement error for target type θ across all possible beliefs
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Figure 6.5: Reputation systems with different amounts of error.

of reputation, normalized over all possible reputations, R, with the exterior derivative of R, dr,
as

E(εθ) =
1∫

R dr

∫
R
εθ(r)dr. (6.4)

Figure 6.5 shows two reputation systems, each with one fixed point and the same derivative
at the fixed point. In the reputation system shown by the line labeled fast gain, slow expend,
targets with low reputations quickly improve their reputation, but the reputation can overshoot
and would oscillate as it approaches χ. A reputation system producing the line labeled slow
gain, fast expend would have targets gain reputation more slowly than fast gain, slow expend,
and targets that gain overly valued reputations would quickly expend a significant amount
of reputation; some targets would cause large oscillations in their reputation, possibly for a
significant period of time before their reputation stabilizes, if ever. An example of slow gain,
fast expend is the recent major Ponzi scheme by Bernard Madoff, where he had gained a
strong reputation throughout his career and allegedly used his reputation to build the Ponzi
scheme.1 Qualitatively, the fast gain, slow expend reputation system is generally preferable
to slow gain, fast expend because it is more stable and accurate. The ARME provides a
quantitative comparison, yielding a lower error for the fast gain, slow expend reputation system.

If a reputation system does not provide an upper bound for reputation, for example, one that
simply counts the number of positive encounters, then ∀r ∈ R, ||χ(θ)−Ωθ(r)|| <∞ : εθ(r) = 0
because the denominator is ∞. This is problematic because reputation evaluations would
have the same error of 0 even if the error should intuitively warrant a nonzero value due to
the reputation value typically straying far from the fixed point. One solution is to use the
maximum reputation achieved by any agent as the upper bound; this preserves the range of

1http://www.sec.gov/news/press/2008/2008-293.htm
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ε ∈ [0, 1] and thus E(εθ) ∈ [0, 1], keeping reputation systems on the same scale for direct
comparison. However, finding the maximum achievable reputation is not always possible or
practical. In such cases, the denominator in evaluating εθ(r) may be removed, which will
change the range of ε and E(εθ) to both be in [0,∞). The lack of normalization in these cases
can limit the usefulness of ARME in comparing dissimilar reputation systems.

Although ARME gives the error for a single target type, an important purpose behind a
reputation system is to deal with different target types. One reputation system may yield low
error with targets of bad reputations whereas another reputation system may yield low error
with targets of good reputation. Further, a system may have mostly good or mostly bad agents,
so a reputation system designer should evaluate and compare reputation systems based on the
expected mix of target types.

Desideratum 2 Accuracy: The average reputation measurement error, E(ε), should be min-
imized with respect to the believed distribution of target types, represented by the probability
density function f(θ), where E(ε) =

∫
Θ f(θ) · E(εθ)dθ.

Accuracy represents a reputation system’s resilience to misinformation. If an agent’s repu-
tation is significantly incorrect, a reputation system with good accuracy will quickly move the
agent’s reputation to a value which is more accurate. Accuracy is measured by the average
error in a reputation system’s evaluations across all possible beliefs given a strategic agent.

6.4.3 Convergence

Whereas ARME gives an indication as to how the reputation system performs across all repu-
tations, it does not give an indication as to how the system performs when a rater’s belief of
another’s reputation is somewhat accurate. To address this situation, we now discuss reputation
dynamics around a fixed point.

A fixed point is said to be attracting if the dynamical system asymptotically converges to
the fixed point when starting near enough to it. A fixed point may also be repelling, meaning
that the dynamical system diverges from the fixed point unless the current value is at the fixed
point. An example of a repelling fixed point is the fixed point of the line labeled self-affirming
in Figure 6.6. If a reputation system has a single fixed point, then over time the accuracy
of a target’s reputation increases for an attracting fixed point and decreases for a repelling
fixed point. Dynamical systems may also be attracted to or repelled from a periodic cycle of a
number of points, or end up chaotic, meaning that the value jumps around within a region in
an unpredictable manner [Devaney, 1992].

A fixed point can be attracting on one side and repelling on the other if Ω is tangential
to the line r′ = r or if the derivative is not continuous at the fixed point. Systems whose
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Figure 6.6: Reputation systems with large derivative magnitudes at the fixed point.

derivatives are not continuous at their fixed points can act similar to systems with no fixed
points because the reputation moves in only one direction in each case. However, if a target’s
reputation asymptotically approaches the fixed point from the attracting side but does not cross
the boundary of the fixed point, then the system can still exhibit stable reputations.

In Figure 6.6 the line labeled self-affirming depicts a reputation system in which a rater’s
eventual belief of a target is completely dependent on its initial belief due to the repelling fixed
point. By tracing the feedback of this function, a reputation below χ would eventually end up
at R and a reputation above χ would eventually end up at R. Such a mechanism is not generally
useful for measuring reputation, but may nevertheless be useful as an interaction mechanism if

• prior beliefs begin at specified values, e.g., when all agents participating in an online
auction automatically start with a neutral reputation;

• better reputations incentivize targets to perform in a more socially beneficial manner, e.g.,
an online auction that explicitly awards higher payoffs to agents with better reputations;
or

• it is otherwise effective in alleviating moral hazard, e.g., a system in which agents with a
low reputation are permanently banned.

The curve labeled chaotic in Figure 6.6 shows a repelling fixed point that causes a target’s
reputation to remain persistently unstable. Below the fixed point, the target’s reputation grows
quickly. Once the target’s reputation is above the fixed point, the target’s best strategy is to
take actions that quickly reduce its reputation. A reputation system exhibiting this behavior
would likely be ineffective because a target’s current reputation is usually meaningless with
regard to its type. An example of such a system is a peer-to-peer file sharing service where
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agents first must upload content before they can download content. In this case, the agent must
first build up its reputation by uploading files to other peers, and then the agent can expend
its reputation by downloading. An agent’s reputation, that is, the amount of data uploaded or
downloaded, functions similar to a currency.

Whether a fixed point is attracting or repelling depends on the derivative at the fixed point
[Devaney, 1992]. A fixed point is an attractor if Ω is a local contraction mapping and its
Lipschitz constant, the absolute value of the minimum bound of the scaling factor between
successive iterations, is less than 1. As we are looking at local dynamics, we can express this
constraint on the Lipschitz constant as the maximum component of the gradient as ||∇Ω(r)||∞ <

1 at χ, where a target’s reputation eventually converges provided no other fixed points exist that
change the dynamics.2 If ||∇Ω(r)||∞ > 1 at χ, then the fixed point repels. When multiple fixed
points exist, repelling fixed points can create periodic or chaotic dynamics. If ||∇Ω(r)||∞ ≈ 1
at χ, then the reputations do not change on the fixed point. In this case, a target is incentivized
to perform at its asymptotic reputation level, that is, r ≈ Ω(r).

Attracting fixed points need not converge in a stable manner; a negative derivative causes a
reputation to oscillate about the fixed point whereas a positive derivative approaches the fixed
point from one side. The closer to zero the derivative is, the faster the reputation approaches
the fixed point and the quicker the reputation gains accuracy.

Desideratum 3 Convergence: At the fixed point, χ(θ), the sequence of utility maximizing
reputation values must be attracting and should converge quickly, that is, ||∇Ω(r)||∞

∣∣
r=χ(θ)

must
be less than 1 and should be minimized.

A system with good convergence means that the reputation system will yield stable repu-
tations for agents that are internally stable, and that the error in any given agent’s reputation
from where it should be will decrease over time. This is measured by the rate of convergence
of a strategic agent’s reputation given its optimal strategy.

6.4.4 Unambiguity

Although any number of fixed points may exist for a given target type in a given reputation
system, the ideal number is one. If zero fixed points exist, then the reputation values themselves
are asymptotically meaningless. In order for a system to have no fixed points, one of a couple
of specific situations must occur. One is if the reputation is unbounded such that a target can
attain an arbitrarily high reputation and the reputation remains high even if the target behaves
in a manner that should yield a low reputation. An example of a reputation system yielding

2For a scalar reputation, this can be expressed more simply as | dΩ
dr
| < 1.
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Figure 6.7: Reputation systems without meaningful fixed points.

this behavior would be one where only positive encounters were recorded; because negative
encounters are ignored, a target could simply provide enough positive experiences to build a
good reputation and provide many negative experiences to boost its own profit. Another case
where fixed points may not exist is when Ω is discontinuous, such as a reputation system where
agents are incentivized to oscillate between very good and very bad reputations.

When targets’ reputations are unbounded and the mechanism has no fixed points, all tar-
gets could end up with an unboundedly growing reputation, as in the aforementioned case
represented by the saturating line in Figure 6.7. If, for all target types, Ω is completely below
the diagonal except for the lowest reputation value, as shown by the line labeled dissipating in
Figure 6.7, then all targets would eventually end up with the worst possible reputation. The
dissipating case is similar to the saturating case except that a target’s reputation continually
decreases. Each target’s optimal strategy is to always reduce its reputation, leaving the reputa-
tion system meaningless outside of a target’s a priori reputation. Because a target’s reputation
and thus payoff are both guaranteed to continually decrease, a reputation system with such
dynamics is generally a poor choice from the standpoint of mechanism design. One real-life
example of such a situation is certain vendors at tourist traps. If they provide low-quality
goods, tourists do not buy from them, so they increase the sales pressure. At some level of sales
pressure, enough tourists do buy from such vendors just to get the vendors to stop trying to
sell to them, further incentivizing the vendors to increase pressure on selling low-quality items.

If multiple fixed points exist, then the fixed point that is asymptotically achieved depends on
the rater’s initial beliefs, hence the reputation is ambiguous. Consider the line labeled separating
in Figure 6.7. If the target’s reputation is above the middle of the reputation domain then the
target’s reputation converges to χ. If the target’s reputation starts below the middle, then it
continually receives a lower reputation until it reaches the lowest possible value. Note that this
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depends solely on the other rater’s initial belief; if rater a believes target b has a low reputation,
then such a reputation system exaggerates this incorrect yet self-fulfilling belief. This type of
graph might be seen in the following reputation situation. Consider a manager at a business
who highly values his initial opinions and does not like to be proven wrong. Further, consider
some new employee that will behave in a generally consistent manner (has a fixed type). If
the manager believes that the new employee will excel, the manager might give the employee
many more opportunities to excel than to an employee who the manager believes will not excel.
Because of the positive reinforcement in this situation, the manager’s initial beliefs, even if
invalid, may become a self-fulfilling prophecy.

Having multiple fixed points is not necessarily a problem for a reputation system. If a
target’s reputation cannot possibly get to a fixed point, the fixed point is irrelevant. On an
online auction site, for example, the reputation dynamics of targets with low reputations do not
matter if the site bans a seller’s account if the seller’s reputation drops below a certain threshold.
If the reputation system depicted by the aforementioned separating line from Figure 6.7 starts
all targets off with the maximum reputation then the targets may not ever reach the lower
region because the graph changes shape accordingly with the target’s type (separate diagrams
could be plotted for all values of θ to demonstrate this, much like Figure 6.4). An example of
a reputation system that can exhibit this kind of behavior is one that values a long positive
history significantly more than recent actions. For a desirable target type, the system might
have a fixed point at a high reputation and another at a low reputation. In order for a target
with a desirable type to achieve the lowest fixed point, it might need to irrationally expend
effort to make outcomes bad enough to diminish its reputation to the point where it is better to
put no effort into the quality of its products. If the target is rational, then this fixed point will
not be reached unless the target’s actions are at least partially driven by a stochastic process
and the target was particularly unlucky, which may happen on occasion within an environment
with a large enough number of agents. In a market with significant competition, few sales, and
small profit margins on products, a target with a favorable type but low reputation may not
find it profitable to expend the effort required to build up to a higher reputation fixed point.

Even if a reputation system has theoretically inaccessible fixed points, in practice it does
not necessarily mean that it is impossible for targets to reach this region; errors and unforeseen
cases could make it possible. A shipment may be lost by an intermediate party who denies
responsibility or a bug in software can cause a rating to be inaccurate with respect to the
target being rated. Therefore, it is most desirable for a reputation system to have one fixed
point per target type. If exactly one fixed point exists for a given target type, then the fixed
point is the target’s reputation. The ideally descriptive case is when the mapping between type
and reputation is bijective.
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Desideratum 4 Unambiguity: A target’s reputation should be asymptotically unambiguous,
that is, ∀θ ∈ Θ : |{r ∈ R : r = Ωθ(r)}| = 1.

Agents’ reputations in a reputation system that is asymptotically unambiguous are not ulti-
mately dependent on a priori beliefs. In a system meeting this desideratum, an agent can never
be permanently stuck with a reputation; if the agent randomly changes its underlying type, the
reputation system itself is ergodic. Unambiguity is measured by counting the number of unique
fixed points in the reputation path of a strategic agent starting at all possible reputations.

6.5 Empirical Results

We now apply our desiderata to some important reputation systems. We investigate the repu-
tation measurement aspects of each system. For each system, we briefly review the reputation
measure it embodies, discuss utility considerations, and then directly evaluate the reputation
systems. We evaluate each reputation system using the same range of utility values with a
simplified transaction model exhibiting moral hazard.

6.5.1 Experimental Method

We evaluate reputation mechanisms using a simple, stylized interaction mechanism for two
reasons. First, we use a simple model to keep the problem of evaluating optimal reputation
strategies tractable in order to evaluate the reputation mechanism itself; complex markets can
require an intractably large number of evaluations [Fullam and Barber, 2006]. The second
reason is that complex markets make it more difficult to isolate the effects of a single target’s
strategy [Kerr and Cohen, 2009].

In each round of our interaction model, a rational agent begins with a specified reputation.
The rational agent begins in the role of target, choosing whether to offer a favor to another
agent in the initial role of a rater that is operating using the reputation system being evaluated.
If the rational agent offers the favor, it incurs a cost of c to itself and the other agent would
receive a benefit of b. These roles are then reversed, where the other agent chooses whether to
offer the rational agent a favor with the same payoffs, and the round is concluded. To show that
“gains from trade” are usually possible when agents grant favors to one another, we examine
these variables in the (partially overlapping) ranges of c ∈ [1, 12] and b ∈ [10, 30].

We evaluate each system with respect to the above desiderata against rational targets across
the range of possible discount factors. A discount factor is how an agent places less value on
future events than on present events. Discount factors arise from combinations of factors such
as the uncertainty of a future event occurring and external methods of compounding utility
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(e.g., investments). Discount factors are widely employed in decision models across economics
and artificial intelligence [Dellarocas, 2005, Ely and Välimäkiz, 2003, Hazard, 2008, Jurca and
Faltings, 2007, Saha et al., 2003]. We employ the commonly used exponential discounting
method. Using this method, each agent multiplies the expected utility of an expected future
event by γt, where γ ∈ [0, 1] is the discount factor and t is the time of the event relative to the
present. Discount factors can directly affect an agent’s optimal behavior and thus reputation.

As we discussed in Section 6.3.3, an agent’s patience can affect both its behavior and its
ability to observe behavior in others. Discount factors are a quantitative measurement of
patience. A greedy target might rapidly expend its reputation, whereas a patient target may
build and retain its reputation. When evaluating reputation systems, we investigate behavior
across the range of possible discount factors.

In our simulations, the possible strategies of a target are a series of binary decisions. That
is, each strategy is a sequence such as 〈favor, favor,nofavor, . . .〉. We limit the length of the
strategies we consider via STRATEGYDEPTH, a parameter of the simulation. We write the set
of possible strategies in a regular expression notation as {favor,nofavor}STRATEGYDEPTH. In our
simulations, we set STRATEGYDEPTH such that the 95% of the total utility over the infinite
horizon is captured with respect to the agent’s discount factor, meaning STRATEGYDEPTH =
dlog(1− 0.95)/ log(γ)e.

Algorithm 4 ComputeNextReputation(raterModel, target, targetReputation)
1: bestUtility ← −∞
2: nextReputation ← targetReputation
3: strategySpace ← {favor,nofavor}STRATEGYDEPTH

4: for all s ∈ strategySpace do
5: 〈util, r〉 ← ComputeUtilityAndReputationFromStrategy(raterModel, target, s, targe-

tReputation)
6: if util > bestUtility then
7: bestUtility ← util
8: nextReputation ← r
9: end if

10: end for
11: return nextReputation

To find the optimal strategy for a given discount factor, we compute the utility gained for
each possible strategy of the entire tree of the extended form game, as outlined in Algorithm 4.
Each time the rational target is given the opportunity to decide whether to offer a favor, both
decisions are followed. This algorithm approximates Ωθ(r) to the depth of the game tree as
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specified by the constant STRATEGYDEPTH. Because of the intertemporal discounting, each
successive decision yields less utility, and so the utilities of infinitely long strategies may be
approximated when the future expected utility falls sufficiently close to 0 with respect to the
payoffs from the target’s actions in the nearer future. The overall computation of this Markov
decision process is exponential in the number of decisions followed. A rational target’s future
expected utility for a particular reputation, U(r), can be expressed recursively in its Bellman
equation form as

U(r) = max
σ

(u(r, σ) + γ · U(N(r, σ))) , (6.5)

where σ is the agent’s action, u(r, σ) is the utility it expects to get for a given time step, and
N(r, σ) is the agent’s new reputation after it performs σ. The agent’s action will be that which
maximizes utility for the current reputation, r, that is, the outermost σ. Algorithm 5, which
is used on line 5 in Algorithm 4, evaluates this expression for the model-specific functions
GetNextReputation and GetExpectedActionPayoff to find the total utility and next reputation
of a target that employs a particular strategy. Lines 5 through 8 of Algorithm 5 compute
the cost that the target occurs if its strategy is to offer a favor for the given timestep, and
line 14 computes the benefit that the target receives gets from the rater based on the target’s
reputation. Between these two payoffs, line 11 updates the target’s next reputation given its
current reputation and most recent action.

The functions GetNextReputation and GetExpectedActionPayoff express the entire function-
ality of the reputation system, encompassing the effects of multiple agents if applicable. The
first function, GetNextReputation, returns the target’s next reputation with respect to the rater,
updated from its current reputation by the action it performs. The second function, GetEx-

pectedActionPayoff, returns the expected payoff that the target will receive given its reputation
and whatever parameters are used to determine the benefit. In our particular evaluation sce-
nario, the payoff is independent of the target’s action because the rater does not know the
target’s action. However, in other situations, GetExpectedActionPayoff may be a function of
some information about the target’s strategy, for example, if the target’s action contains a
publicly observable signal such as the fact that a product was shipped via an impartial third
party.

It may be possible to analytically solve some of the models for the optimal solution, but
others are quite complex. We thus use a brute force analysis because it works across all models.
However, because this brute force analysis is costly, we do not explore the region of rational
agents with the highest discount factors (above 0.90 for individual agents and above 0.60 for
networks of agents). Unless an unforeseen phase change exists in any of the reputation models
with discount factors greater than 0.90, we expect our results should be representative of the
higher discount factors.
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Algorithm 5 ComputeUtilityAndReputationFromStrategy(raterModel, target, targetStrategy,
targetReputation)
1: utility ← 0
2: currentRep ← targetReputation
3: for timestep = 1 to length(targetStrategy) do
4: //target plays its strategy
5: if strategy[timestep] = favor then
6: //if the target gives a favor on this timestep, it loses some utility
7: utility ← utility − target.γtimestep−1 · FAVORCOST
8: end if
9: //rater reacts and plays its strategy according to the model

10: //for example, if the target gave a favor above, the rater might respond by raising the
target’s reputation

11: currentRep ← raterModel.GetNextReputation(currentRep, strategy[timestep])
12: //depending on the target’s updated reputation, the rater would reward it with a FA-

VORBENEFIT
13: //the FAVORBENEFIT would add to the target’s utility
14: utility ← utility + target.γtimestep−1· raterModel.GetExpectedActionPayoff(currentRep,

FAVORBENEFIT)
15: end for
16: return 〈utility,newReputation〉

6.5.2 Choice of Models

Whereas many reputation systems have been proposed and studied [Ramchurn et al., 2004], lit-
tle work has directly compared their effectiveness in general terms. From the body of literature,
we choose systems based on the following criteria.

• Each system measures reputation and does not merely aggregate reputations without
specifying how reputation is defined for a given context. Trust propagation is an important
topic, but as our reputation measures examine the entire system, agents need some method
of measuring trust.

• The reputation as measured by each system either explicitly characterizes the agents’
utilities or can be used as a basis for making decisions regarding their interactions.

• The implementation of each system is straightforward and well-defined. This means that
we identify papers that provide sufficient information to recreate their model. This also
means that we sought models that did not require a large number of abstract measure-
ments and parameters and could be applied to simple interactions without requiring a
market.
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• The set of systems considered is diverse. To demonstrate the generality of our approach,
we consider models based on different principles and philosophies.

Whereas we omitted some models due to the above criteria, this omission does not neces-
sarily mean that our measures cannot be applied to them. Kerr and Cohen’s Trunits model
[2006] requires a market whereby agents need to have some input or control with respect to
their goods’ prices. Our simple favor experiment would not adequately explore the Trunits
reputation space, but a more complex scenario could meet this need, albeit with the require-
ment of further computational complexity to evaluate the optimal strategies. Similarly, Fullam
and Barber’s model [2006] is designed for the complex interactions in the ART testbed [Ful-
lam et al., 2005]. Other models, such as that described by Zhang and Cohen [2007], focus on
large-scale aggregation. Many of the models focusing on large-scale aggregation resemble or
build upon another model that focuses on individual agents; in Zhang and Cohen’s case, their
model resembles the Beta model. Sierra and Debenham’s information-theoretic model [2005]
explicitly uses preferences rather than utilities, and is geared toward richer interactions where
agents have many possible actions.

The dynamics of a reputation system are greatly influenced by the relationship between
reputations, capabilities, and utilities. If a good reputation is expensive to build and maintain,
but the difference in utility between having a bad versus a good reputation is small, then even
trustworthy agents would not have an incentive to build up their reputation. This is analogous
to diminishing returns seen by a company when improving the quality of a product that already
meets the standards expected in the marketplace. For example, if agent a in a peer-to-peer
environment is requesting a file transfer from agent b, agent a may not notice any difference
in service if b’s upload bandwidth is slightly greater than a’s download bandwidth versus if
b’s upload bandwidth is ten times a’s download bandwidth. For reputation systems (Beta and
Sporas) which do not explicitly provide a utility model, we apply a utility model inspired from
empirical results on online auctions.

6.5.3 Applying Desiderata to Existing Systems: Beta Model Example

The basic Beta model reputation system is a good exemplary case to apply our desiderata
because the reputation mechanism itself is simple to implement and understand, yet contains
a few minor hurdles with respect to applying our desiderata.

The Beta model is a frequently studied and extended reputation measure [Jøsang, 1998,
Jøsang and Quattrociocchi, 2009, Teacy et al., 2006, Wang and Singh, 2006, 2007, Paradesi
et al., 2009], where agents rate each experience with another agent as positive or negative.
Using this method, raters quantize interactions into positive and negative experiences and use
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a beta distribution to indicate the probability distribution that a target will perform positively
in the future. Given a number of positive interactions, α, and negative interactions, β, the
expected probability that a future interaction will be positive is α

α+β , the mean value of the
beta distribution. Reputation systems using this approach typically assume that agents are
not rational and have an intrinsic probability of performing positively or negatively. A target’s
reputation is its expected probability of yielding a positive interaction.

The following steps describe the process for applying our desiderata measures to a reputation
system. In each step, we use the interaction model specified in Section 6.5.1 with the basic Beta
model as an illustrative example.
1. Determine the update function. For the Beta model, the update function is straight-
forward with respect to our interaction model. A rater rates the target positively if the target
offered a favor, or negatively if the target did not. A rating, r, consists of a tuple of two
nonnegative integers: the total number of positive interactions, iP,r, and the total number of
negative interactions, iN,r. The update function, n, for the Beta model can be expressed as

n(r, σt) = 〈iP,r + σt, iN,r + (1− σt)〉 , (6.6)

where σt is the strategy of the target at time t yields 1 if it will offer the favor and 0 if it will
not.

When computing an agent’s payoff or plotting an agent’s reputation using the Beta model,
we use the belief of a positive outcome, bP , as the scalar value of an agent’s reputation, as
defined by Jøsang [1998]. For a given reputation r, bP can be expressed as

bP (r) =
iP,r

iP,r + iN,r + 1
. (6.7)

2. Determine the payoff function. Adding utility to the Beta models is relatively
straightforward. Because the transactions are quantized as being positive or negative, we
assume that each carries a constant utility. As reputation is the probability that interacting
with the given agent will generate a positive transaction, the expected utility is simply the
probability of each outcome multiplied by the utility of each outcome. From a strategic agent’s
perspective, the main difference between interacting with a single agent using the Beta model
and a population of communicating agents using the Beta model is the number of observations
any given target will have.

The exact relationship between reputation and price can be unclear in some contexts
[Resnick et al., 2006], but Melnik and Alm [2003] have found a multiplicative relationship
with sublinear and superlinear terms between reputation and price on eBay. To explore some
reputation systems further, we apply three utility models with respect to reputation. The first
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is linear, meaning that a perfect reputation yields full utility, a middle reputation yields half
utility, and the worst reputation yields no utility. We also investigate a sublinear relationship,
where the scalar representation of the reputation, bP in this case, when normalized to the do-
main [0, 1] yields a utility k · b2P , where k is the maximum benefit. A sublinear relationship
between reputation and utility means that agents strongly favor those with high reputations.
We use the relationship of k ·

√
bP for a superlinear relationship, which offers significant utility

to all agents but those with the lowest reputations.
In our simplified interaction model, the agents alternate in granting favors. One can think

of this as alternating delivery of an item by one agent, followed by payment by the other agent.
With the linear relationship between reputation and utility, a target with bP = 0.25 would
receive half the price for a good than would a target with a bP = 0.5. The utility, u, of a target
of type θ for a favor at time t, can be written simply as

u(pB, t, θ) = γt
θ · bP · FAVORBENEFIT. (6.8)

3. Integrate Update and Payoff Functions. The update function and payoff function
can now be integrated into Algorithms 4 and 5, where n(r, σt) and u(pB(r), t, θ) are used for
GetNextReputation and GetExpectedActionPayoff, respectively.
4. Run Algorithm 4 over Domain of Reputations. In the basic Beta model, sub-
sequent ratings affect an agent’s overall rating less than the previous. We examined a few
different numbers of previous observations, but for the results reported in this paper, we used
10 previous observations. This means that we ran Algorithm 4 on each possible reputation
with 10 observations, from 10 positive and 0 negative observations, through 0 positive reputa-
tions and 10 negative reputations (for models other than Beta, we divided the reputation space
into 10–100 points), using a variety of cost, benefit, and discount parameters as described in
Section 6.5.1. Using other total numbers of observations to cover the full two dimensions of
possible data is a valid approach, but we held the magnitude constant simply to rule out the
Beta model’s nonstationarity (that the influence of each subsequent action has less effect on
the agent’s reputation), as explained in Section 6.7.

Algorithm 4 also needs to be run with various discount factors for the strategic target agent.
Except when otherwise noted, we ran discount factors from 0.0 to 0.8 in 0.1 increments.

Finally, the entire set of tests needs to be run with various values of FAVORBENEFIT and
FAVORCOST to determine how consistently the model behaves across the range of favor sizes.
For these values, we chose several combinations across the domains of c and b as outlined in
Section 6.5.1.
5. Evaluate Monotonicity.
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As our interaction model is focused on moral hazard, an IPS agent would prefer to interact
with an agent with a higher discount factor than with an agent with a lower one, as discussed
in Section 6.3.3. With a more patient agent, the IPS agent could enter into Nash equilibria
in the repeated game that have higher payoffs for both agents. The IPS could do so using a
trigger strategy, not unlike the related repeated prisoner’s dilemma model.

Given that the IPS agent prefers higher discount factors, we can examine whether more
preferable strategic target agents have reputations that yield higher utility to raters in the
interaction model. The payoff function maps the target’s reputation to its utility. The payoff
functions for the Beta models are strictly monotonic (linear, square root, and quadratic). We
evaluate these results with respect to the ranges of FAVORBENEFIT and FAVORCOST.

If the rater’s expected utilities are nondecreasing with respect to discount factor, then
the reputation system is monotonic, as is the case with the Beta model with a superlinear
relationship between reputation and price. If the utilities are constant, as is the case with
the Beta model with linear and sublinear relationships between reputation and price, then
the reputation system is nondiscriminatory. If the rater utilities ever decrease with respect to
increasing discount factor, then the system is nonmonotonic. Alternatively, if no meaningful
asymptotic reputation exists, then the reputation system cannot be evaluated with respect to
monotonicity.
6. Evaluate Unambiguity. We find Unambiguity by first examining each pair of successive
inputs, say ri and ri+1, to Algorithm 4 for a given agent type (discount factor) and environment
(FAVORBENEFIT and FAVORCOST). If the line defined by r′ = r is crossed by (or coincides
with) any two successive reputation values rj and rj+1 when plotted based on their inputs (ri
and ri+1), then the point of intersection is a fixed point. If zero or multiple fixed points exist
(as discovered for different values of i), then the system fails Unambiguity. Otherwise, we
use this unique fixed point value of r when computing the other measures. We note that if
insufficient resolution is used in evaluating possible input reputations with Algorithm 4 then
additional fixed points may be lost. For our results, we examined higher resolution outputs for
subsets of our experimental results to make sure we were not likely missing any, though it is
difficult to guarantee this numerically for reputation systems that exhibit noisy results.
7. Evaluate Accuracy. After computing the fixed point to determine Unambiguity, it
is straightforward to calculate Accuracy by computing the normalized mean absolute dis-
tance from each output of Algorithm 4 to the fixed point reputation for each agent type and
environment.
8. Evaluate Convergence. Computing Convergence is also straightforward once the
fixed point has been found. The slope may be closely approximated by computing the slope of
the line segment between the points immediately surrounding the fixed point (or averaging the

129



two nearby slopes if the fixed point lies on the boundary between two line segments).

6.5.4 Results

Here we discuss the results for each of the models we evaluate. We use our desiderata to compare
reputation systems and find out how well they perform when faced with a strategic target agent.
In doing so, we also validate that our desiderata are granular enough to distinguish differences
between reputation systems, and that our results are intuitive.

Table 6.1 shows a summary of the reputation systems used and how they map into the
model-specific functions for finding the next reputation and computing the expected action
payoff. Table 6.2 shows a summary of our results discussed in the remainder of this section.

Results on the Beta Models

The Beta model, as described in Section 6.5.3, is the foundation for many approaches to rep-
utation systems, including that proposed by Jøsang’s [1998, 2009] Subjective model, Teacy et
al.’s [2006] Travos system, and Wang and Singh’s [2006, 2007] Certainty model. Most of the
differentiation between these models is how they measure and aggregate uncertainty of repu-
tation, but the underlying measurements are the same. We refer to this class of reputation
systems as the Beta model.

Whereas the Beta models deal with the expected value of the probability that a target is
trustworthy, many Beta models also focus on the uncertainty of this rating. This uncertainty
is useful for determining whether to interact with a particular agent. Uncertainty can be an
important element of decision-making for a risk-averse agent, that is, one who would prefer to
avoid transactions that might have a negative outcome, even if the expected value is positive.
To evaluate the effect of uncertainty as measured by the Travos and Certainty models, we
reduce the utility expected from agents of uncertain trustworthiness. In the case of Travos, we
multiply the expected utility by both the probability of a positive transaction and the certainty.
For the Certainty model, we simply multiply the expected utility by the agent’s belief value,
as this accounts for the both probability of a positive transaction and the uncertainty. In both
models, certainty is in the range of [0, 1].

The Beta model and the Subjective model exhibit nearly identical results, and so we ex-
amine them together. This is to be expected as the Subjective model’s belief is α

α+β+1 . We
did not examine the Subjective model’s trust propagation, as it requires significant additional
assumptions about beliefs of other agents’ digital signatures, which is not within our present
scope.
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Table 6.1: Summary of reputation systems evaluated.
Reputation
System

Next Reputation Expected Action Payoff Expected Action Pay-
off Graph

Beta Increment the
positive or
negative
experience count.

Exponentiate probability of
positive outcome to 0.5, 1, or 2,
for superlinear, linear, and
sublinear, respectively, then
multiply by favor value b. The
graph shape is due to the
straightforward expected value
calculations.

reputation

ex
pe

ct
ed

 u
til

ity

superlinear utility
linear utility
sublinear utility

Certainty
Increment the
positive or
negative
experience
counts, compute
the certainty of
information.

Multiply the Certainty model’s
belief by b. The graph curves are
due to the additional factor of
uncertainty.

reputation

ex
pe

ct
ed

 u
til

ity

superlinear utility
linear utility
sublinear utility

Discount
Factor

Measure discount
factor. Update
probability
distribution using
Bayesian
inference.

If the discount factor is sufficient
to sustain full reciprocity then
offer full favor. The graph is a
step function produced by the
cutoff value of the target’s
expected discount factor.

reputation

ex
pe

ct
ed

 u
til

ity
Probabilistic
Reciprocity

Add all
accumulated
favors to compute
total balance.

Multiply the favor value by the
probability of offering a favor.
The graph shape is due to the
model’s sigmoid function.

reputation

ex
pe

ct
ed

 u
til

ity

Sporas

Exponentially
dampen old
rating and
combine with new
rating.

Use the rating normalized to
[0, 1] in place of the Beta model’s
probability of a positive
outcome. The discontinuities in
the function’s derivative arise
due to points when the optimal
strategy changes. reputation

ex
pe

ct
ed

 u
til

ity

superlinear utility
linear utility
sublinear utility

Travos
Increment the
positive or
negative
experience
counts. Compute
most probable bin
in the Beta
distribution.

Multiply the probability of a
positive outcome by Travos’s
probability of being in the
corresponding bin in the Beta
distribution (ρ in their paper).
Each nonmonotonicity occurs
when the reputation value is
near the edge of a bin.

reputation

ex
pe

ct
ed

 u
til

ity
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Table 6.2: Summary of reputation system performances; the values listed are approximate
averages across our experiments.

Reputation Unambiguity Monotonicity Convergence ARME (Accuracy)
System (lower is better) (lower is better)

Beta (superlinear) yes monotonic 0 and 0.9 0.4
Beta (linear, sublinear) yes nondiscriminatory 0.9 0.45
Certainty no − 1 −
Discount Factor yes monotonic < 0.1 0.02
Prob. Reciprocity no monotonic no 0.2
Sporas (superlinear, linear) yes monotonic ≈ 0 0.3
Sporas (sublinear) yes nonmonotonic no 0.4
Travos yes monotonic 0.8 0.2
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Figure 6.8: Beta and Subjective models.

The quality of the Beta model results varied by the interpretation of the probability of
an agent performing positively. Using a linear interpolation of the probability, which is the
natural risk-neutral way of modeling utility, led to results where no agents offered any favors
and simply spent their reputations. The thick line in Figure 6.8 indicate typical results of such
a linear probability-utility relationship, where all targets’ reputations converged toward the
minimal reputation. The sublinear results were the same as the linear. In this case, the Beta
model fails Monotonicity, as all targets’ reputations end up the same, which means that
the all agents behave the same and that the reputation system cannot differentiate between
agents. In the superlinear case, that is, where a target is either risk-seeking or is not harmed
as much by negative interactions, the Beta model fares quite well. The superlinear Beta model
meets Convergence with positive slopes, either slowly with slopes of 0.9 or at the ideal of 0,
and also meets Monotonicity by distinguishing higher values of discount factors. The Beta
model’s error in Accuracy was mostly independent of the probability-utility relationship and
ranged from 0.40 to 0.45. We found that the optimal strategies against the Beta model were to
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Figure 6.9: Certainty model.

continually build up reputation by acting in a favorable manner for some period and then act
in an unfavorable manner afterward. The period in which the agent acted favorably depended
on the parameters. When the rational agent was too impatient or the benefits were too low,
the rational agent would never behave favorably.

Using the Certainty model’s value of belief instead of expected value yields results that
are quite different than the basic Beta distribution. Further, the characteristics of the Cer-
tainty model became more pessimistic when evaluating against a group of three raters that are
communicating and aggregating ratings as opposed to an individual. To measure behavior in
this network setting, we had one rational target interact with three initially identical raters,
all which employ the model being examined. After each round of interactions, the raters all
exchanged information about the target, and the resulting graph is the rating of one of the
three raters. The target’s possible action space includes all combinations of actions and agents,
so a target could concievably act favorably to two agents and use its reputation to exploit a
third.

The line labeled network, probability in Figure 6.9 shows the typical shape when a tar-
get is faced with a network of three raters. As shown by the lines labeled individual, belief
and individual, probability, the targets were not incentivized to change their reputation until
it crossed a critical threshold, at which point they would always perform positively. The Cer-
tainty model met neither Unambiguity nor Monotonicity, which made it difficult to assess
Convergence and Accuracy.

Travos computes uncertainty by subdividing the reputation space into five equal regions,
finding the region containing expected probability of trustworthiness, and measuring certainty
as the probability that the reputation is within the region. Travos normalizes the magnitude of
all reputation information communicated and aggregated to a rater to prevent one rater’s rec-
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Figure 6.10: Travos model.

ommendation from strongly dominating another rater’s recommendation. However, this mech-
anism also amplifies small numbers of observations, as the aggregation mechanism implicitly
assumes a relatively large number of observations. Using Travos’s certainty as a multiplicative
factor in utility, Travos met Monotonicity, but was very close to being nondiscriminatory
because most of the parameterizations yielded the same fixed point. The nondiscriminatory
behavior is largely due to the normalization methods; Travos was designed for use with a sig-
nificant volume of transactions rather than the small number of transactions our measures use.
However, given that all of the reputations converged to the same point, the fact that Travos
generally met the other desiderata does not carry significant weight in evaluating the model
with smaller numbers of transactions.

Results on Probabilistic Reciprocity

Sen [2002] proposed the Probabilistic Reciprocity model as a way for an agent to experiment with
trusting another agent to see if the first agent reciprocates favors back. Each agent keeps track
of the total amount of utility spent and gained throughout the history of games between itself
and other agents, summing the utilities of the gains and losses as the balance, B. Agents use
this balance to adjust their probability of performing a favor to another agent. The probability
function is written in terms of the cost of the current favor, c, the expected cost to offer a favor,
E(C), as

P (offer favor|B) = 1/
(

1 + exp(
c− βE(C)−B

τ
)
)
. (6.9)

The parameters β and τ are tunable cooperation constants. We use balance, B, as an agent’s
reputation, as this is the only parameter that encodes reputation information.

The Probabilistic Reciprocity model, depicted in Figure 6.11, meets some of the desiderata
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Figure 6.11: Probabilistic Reciprocity model. The model only does not meet unambiguity for
agents with poor reputations using certain marginal benefits of favors, and although the model
does not meet convergence, it is Lyapunov stable.

most of the time. Although it does not converge, it does remain Lyapunov stable. The figure
shows two examples, one where the benefit of the favors is significantly larger than the costs
(large margins: c = 10, b = 18), and one where the benefit is only slightly larger than the
cost (small margins: c = 10, b = 12). The model generally met Monotonicity in every
occurrence we examined, excluding ranges of fixed points where an agent’s initial reputation
is too low, such as the left portion of the line labeled small margins. Figure 6.11 shows such
a range in the lower portion of the thick line. In these cases, the model fails Unambiguity

because agents would refuse to consider dealing with an agent with a reputation that is too
low, leaving its reputation unchanged. The weakest part of the model was Convergence, as
the magnitude of the slope at the fixed point, |dΩ

dr |, was far greater than 1 in all cases, and
always negative. This means that an agent’s reputation often changes significantly after every
successive interaction and never converges. Finally, across our various parameterizations, the
Accuracy of the model was usually around 0.2, but was as low as 0.11 and as high as 0.22.
The model’s error was lowest when parameterized at moderate to large margins, such as c = 10
and b = 18, as opposed to those with highest or lowest margins (such as either c = 10 and
b = 12, or c = 10 and b = 30).

Results on the Discount Factor Approaches

Hazard [2008] and Smith and desJardins [2009] both proposed variations of the Discount Factor
model, in which agents strategically maximize utility while attempting to discover each others’
discount factors. An agent’s discount factor is a measure of the agent’s patience, weighting
how the agent accounts for future utility by an exponentially decreasing function of time. In
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Figure 6.12: Discount Factor model.

this model, the expected value of an agent’s discount factor is its reputation. An agent with a
discount factor close to 0 would be myopic and greedy, whereas an agent with a discount factor
close to 1 would offer favors if it expects the relationship or global reputation from offering a
favor to be beneficial to itself in the long run. Like the Probabilistic Reciprocity model, the
reputation of the Discount Factor model is explicitly connected with agents’ utilities.

Figure 6.12 shows the results of the Discount Factor model. Across all the parameterizations
we examined, the results were similar to this graph with all lines of the same shape, the only
major variation being the vertical location of the line on the graph. Because the agents in the
model are strategic, they choose the optimal strategy that corresponds to their discount fac-
tors. Targets cannot credibly maintain an incorrect reputation, and their reputations converge
quickly. We found that agents with a higher discount factor always offer better utility to a
patient agent, so Monotonicity is met. Each agent type also had exactly one fixed point, so
Unambiguity is also met. The model fared well with the Convergence desideratum, with
dΩ
dr being small and positive, usually less than 0.1. The error was small, and so this model
performed well with regard to Accuracy. Across all our parameterizations, the error was
between 0.014 and 0.028.

Results on Sporas

Zacharia and Maes [2000] propose the Sporas reputation model which measures targets’ repu-
tations according to a specified range, with the rater’s reputation influencing the magnitude of
the reputation change. This model employs a dampening function that slows the maximum rate
at which a target’s reputation may change for a given observation as the target’s reputation
increases. Zacharia and Maes motivate Sporas based on online marketplaces and use continuous
reputation values.
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Figure 6.13: Sporas model.

The Sporas model behavior, depicted in Figure 6.13, was remarkably similar to that of the
Beta model, even though the Sporas model permitted continuous interactions. Although we
were initially surprised at the similarity, both models’ reputation computations have a linear
term of quality. Sporas model did not meet Convergence in the sublinear case or when the
difference between c and b was large. The error in Accuracy for Sporas was slightly better
than the Beta model, ranging from 0.20 to 0.45.

6.6 Evaluating Deployed Reputation Systems

The desiderata and analysis techniques we present can also be used to examine behavior in
real-world systems that depend on reputation. Measuring how the reputation of a person or
a firm changes over time can be a useful indicator as to how a reputation system realistically
performs on average.

Whereas eBay is a natural setting in which to investigate online markets due to its size
and prominence in the marketplace, it is less well suited to study from a reputation dynamics
perspective than other portals because of their own policies of sanctioning sellers with low
ratings. EBay’s mechanisms strongly favor big sellers who have obtained good ratings,3 and
place restrictions, such as limited payment methods, on sellers that receive low ratings. Virtually
all sellers have high ratings, with 95% of sellers having a positive reputation [Rubin et al.,
2005]. The fact that eBay is moving toward an enforcement mechanism4 is not necessarily a
bad thing, as enforcement mechanisms can be incentive compatible [Braynov and Sandholm,
2002]. However, this move would render reputation dynamics less important. EBay may have

3http://www.businessweek.com/technology/content/jan2008/tc20080129 981043 page 2.htm
4http://news.bbc.co.uk/1/hi/technology/7250971.stm
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Table 6.3: Example data from an Amazon seller’s reputation.
Time 1 2 3 4 5 6 7 8
Rating r1 r2 r3 r4 r5 r6 r7 r8
Rating Value 5 1 5 5 4 4 5 4
Average Rating 5.0 3.0 3.7 4.0 4.0 4.0 4.1 4.1
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Figure 6.14: Averaged reputation dynamics of sellers who were selling the Slumdog Millionaire
soundtrack with 50 to 500 previous sales of any item.

moved toward the enforcement method because their earlier policies and reputation mechanisms
had difficulties dealing with strategic agents [Khopkar et al., 2005].

In contrast, Amazon (http://amazon.com) does not use such enforcement methods such
that the buyers rely primarily on sellers’ reputations. Amazon’s reputation system averages
users’ ratings, where the expected value of a reputation matches the Beta model as described
in Section 6.5.4. To examine Amazon’s reputation system dynamics, we gathered the feedback
ratings of a number of sellers. To select typical sellers, we chose two best-selling products of
different kinds: the “Apple iPod touch 8 GB (2nd Generation)” and the “Slumdog Millionaire”
soundtrack CD. We studied feedbacks received by sellers who had fewer than 500 reviews. As
on eBay, typical sellers on Amazon do experience a selection bias toward higher reputations;
buyers often avoid a seller with a poor reputation or few ratings. Table 6.3 shows an example
of the data that was collected for an iPod seller.

To reduce the noise of the ratings in order to see the overall dynamics, we group the

138



Current Rating

N
ex

t R
at

in
g

Seller 2

Seller 1

4.5

5

4.5 5

Figure 6.15: Reputation dynamics of low-volume sellers (less than 30 previous sales) who were
selling Ipods.

reputations into regions of 0.025 stars, find the average, and only retain regions that consisted
of three or more data points. Figure 6.14 shows the resulting next reputation function for
several typical sellers. We find that many of the sellers’ reputations converge on fairly linear
trajectories, such as the solid thicker line above the diagonal line in the figure, each converging
at a different slope toward a different intersection of the diagonal line. A number of sellers’
reputations span larger ranges, staying close to the diagonal line as shown by the dashed lines.
Given the averaging reputation mechanism used by Amazon, we expected these graphs to appear
similar in shape to the Beta model in Figure 6.8, which they do. From these results, we can see
from the graphs that the Unambiguity, Monotonicity, and Convergence desiderata were
approximately met given the noise. We can tell that the reputation system appears to measure
some attribute of the sellers because different sellers’ reputations converged at different points.
Because of these differing convergence points, the reputation system may meet Monotonicity.

The feedback history of sellers chosen from the iPod group are approximately bimodally
distributed; the sellers are either high-volume sellers with tens of thousands of feedback entries
or casual, low-volume sellers with less than a hundred. Figure 6.15 shows the reputation
dynamics of two typical sellers from this group. Because Amazon’s system uses an average
rating, but does not dampen ratings over time, each feedback rating has greater influence on a
user’s overall reputation when a seller has few ratings. Given that the number of ratings was low,
the randomness in people’s experiences such as perceived quality and items damaged in transit
may have added noticeable noise to the ratings. However, a number of sellers’ reputations
converged in a straight line over a short range, such as Seller 2 on the graph.
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Figure 6.16: Temporally connected reputation dynamics graph of one seller who was selling the
Slumdog Millionaire soundtrack.

The sellers of the “Slumdog Millionaire” soundtrack tend to have more sellers with feed-
back entries numbering in the hundreds to low thousands. These longer histories show many
reputations that started at one reputation and slowly converged toward another, as shown in
Figure 6.16. In this figure, the data points are connected chronologically, as opposed to being
sorted by the values on the horizontal axis, in order to give a different sense of convergence
given the noise in the system. The reputation starts in the upper right-hand corner after a sin-
gle positive feedback and slowly spirals toward an asymptotic reputation around 4.83. Before
the seller’s reputation converges on this value, its reputation hovers between 4.7 and 4.8. We
see this secondary attracting region for a number of the sellers, which can be due to changing
market conditions, seller behaviors, buyer behaviors, and rating norms.

Determining whether the reputation system is accurately measuring a seller’s type is dif-
ficult when people are involved instead of computational agents, as reputation involves many
psychological aspects and societal norms. The focus of this paper is on computational agents.
The results of live reputation systems with people on Amazon do show similar characteristics to
our theoretical models with rational agents. We can at least conclude that our desiderata and
methods of analysis are worth further investigation in practical online systems where people
rely upon reputation for making real-life business decisions.

6.7 Discussion

The primary purpose of a reputation system is to provide information to agents about other
agents with the goal of improving social welfare. This goal assumes that if agents know which
other agents are trustworthy and which agents are likely to defraud, then the agents’ utilities
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would be improved as agents would self-select transactions with preference toward trustworthy
agents. Whereas a possible design goal is to increase trustworthy agents’ utility the most,
the primary goal is to inform agents and reduce uncertainty with regard to some interaction
mechanism.

If an interaction mechanism has the property of incentive compatibility, then all strategic
targets would always play honestly according to their valuations. Although incentive compati-
ble systems may have use for multiagent learning, for example to determine which agents might
receive the most benefit from which products, such systems have little need for an additional
system to measure the reputations of targets. If a reputation measurement system were added
in order to measure targets’ reputations for use in an additional context or situation, incentive
compatibility may no longer hold. Whereas our desiderata would work in measuring reputation
in an incentive compatible mechanism, the measurements may have reduced relevance. Alter-
natively, if the agents in a system exhibit highly specific behavior and are not strategic, then
our desiderata would need to be modified to use the specific behavior in place of the strategic
behavior. Such a system can arise when interactions are only permitted via proxy agents, that
is, targets that have a predefined behavior that act based on a specific set of parameters.

Our desiderata are useful measures for how well a reputation system will hold up against
strategic attacks. For example, Kerr and Cohen [2009] outline a number of possible ways that
an agent could strategically improve its utility by being dishonest in a reputation system. Their
“reputation lag attack,” achieved by a target alternating between honest and cheating periods,
is applicable when a reputation system that fails to meet Convergence because a target can
exploit oscillations of its reputation. Similarly, their “value imbalance attack,” achieved by
a target being honest with low-cost goods and dishonest with high-cost goods, and “reentry
attack,” where an agent continually opens new accounts to dishonestly use a new untainted
reputation, both indicate that a reputation system has poor Accuracy. A reputation system
designed for high Accuracy would recognize dishonest targets more quickly. In general, our
results are consistent with those of Kerr and Cohen; they find that the Travos, Beta, or Certanty
models all can be effectively exploited by various strategies.

When analyzing pure moral hazard situations, the resulting Nash equilibria are often mixed
strategies, where a target chooses its actions stochastically based on some distribution. If
mixed strategies are necessary or desirable for a particular reputation mechanism, then the
reputation system should somehow recognize when a target is employing a mixed strategy.
Detecting whether a mixed strategy is being employed has some uncertainty to it, as it must be
done statistically within some bounds of confidence. If the reputation system does not collapse
a mixed strategy into a single reputation value, then the expected value of an agent’s next
reputation can be used in place of Ωθ.
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One difficulty in evaluating a reputation measure is if the measurements are nonstationary,
meaning that the reputation measures themselves somehow change over time. Nonstationarity
can arise if it becomes increasingly more difficult or easy to change a reputation when further
measurements are made, as is the case when interactions are aggregated over the entire lifetime
of a target without any sort of dampening—i.e., without weighting old interactions less than
recent ones. Whereas some reputation systems, such as Amazon Marketplace, Travos, and
Certainty, employ nonstationary measures, such reputation systems must be used with caution
because the difficulty of a target changing its reputation becomes increasingly difficult as a
function of the target’s age, as even the oldest interactions count as much as recent ones.

Our desiderata do not always indicate that one reputation system is the best one for a
particular situation. The choice of which reputation system to employ comes down to trade-
offs. For example, one system may offer better Convergence whereas another may offer
better Accuracy. Having good Convergence means that the given system quickly reaches
an equilibrium where the reputation is close to the actual value, but this can be misleading in
cases when the reputation dynamics change rapidly close to the fixed point. A system’s having
good Accuracy means that it corrects a target’s reputation to achieve a reasonably accurate
value quickly, even if the initial reputation is far off. However, raters may be able to only
discern a small amount of information from each transaction in some interaction mechanisms,
and so the interaction model may be detrimental to Accuracy. If a system does not exhibit
Unambiguity, but the unreasonable fixed points are impossible to reach by the path a target’s
reputation takes, then those unreasonable fixed points may be ignored. However, if unforeseen
events, such as a software glitch, incorrectly push a target’s reputation into these regions, then
the ignored fixed points become extremely important and can possibly have major negative
impacts to the reputation system as a whole.

Reputation systems may work better in one domain than another. A reputation system may
work well in the case of adverse selection, but perform poorly in the case of moral hazard. The
effectiveness of a reputation system may change drastically even with different parameters in the
same environment, even if the only different parameter is the topology of agent relationships.
Therefore, when applying our desiderata to a reputation system, they should be applied to a
setting as close to the actual environment as possible. If parameters of the environment or
interactions are known to change quickly or drastically, then the desiderata should be employed
across the range of environments and interactions. One reputation system may perform well in
a certain niche case, but may perform poorly across the full range of interactions.
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6.8 Conclusions

The four desiderata we present measure how well a mechanism fares at measuring the reputation
of a strategic agent. Of the systems we examined, the one that takes moral hazard as the
primary environment in designing the system, the Discount Factor model, fared the best when
evaluated in a moral hazard situation. The results from applying our desiderata were granular
enough to differentiate reputation systems.

Our desiderata may also be evaluated with respect to a distribution of agent behaviors. We
choose to use the IPS agent as the default behavior, as this is a practical worst-case scenario for
designing a reputation system. At the risk of underestimating the agents’ strategic capabilities,
reputation systems may be evaluated with boundedly rational agents or a distribution of fixed
behaviors to see how various reputation systems may perform in realistic environments.

Although many currently proposed reputation systems do not significant computation to
determine agents’ reputations, low computational complexity is desideratum in many situa-
tions. Adding low computational complexity to our set of desiderata would be useful if more
computationally complex reputation systems are proposed and the issue becomes a concern.

Whereas our desiderata are useful for ensuring that reputation systems are useful to the
agents, strictly following the desiderata is not always in the best interest of the party that
implements the marketplace or mechanism—as opposed to the agents who interact with each
other in context of the marketplace. A firm setting up an online auction that profits from each
transaction has an incentive to maximize targets’ reputations, that is, maximize Ω, such that
agents perform transactions before the agents realize that not all are trustworthy. However,
such a practice is not sustainable, and so a firm looking for long-term profits would need to
ensure that the reputation system is useful. Such a firm would need to make trade-offs among
short-term profit, long-term profit, and the various desiderata.

We explore some real-world data from Amazon. We find that the general shape of the
dynamics agree with that of the underlying Beta model, given the noise in the system. The
purpose of our desiderata is for assessing and designing reputation systems in multiagent systems
with rational agents. Our empirical results suggest that they may be applicable to real-world
settings with people, but further study is required to determine whether artifacts from human
factors differ significantly from rational agents in such reputational settings.

Our desiderata are by no means exhaustive and may be modified or extended for domain-
specific purposes. They make a good start toward a general framework for directly comparing
the effectiveness of different reputation systems in a specified situation.
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Chapter 7

Conclusion

The three overarching contributions of this work are demonstrating how important agents’
rationality is when evaluating trustworthiness, showing that patience in the form of intertem-
poral discounting is isomorphic to trustworthiness under general assumptions, and providing a
methodology to measure the dynamics of a reputation system. These three themes are inter-
woven throughout the chapters.

From Chapter 4, discount factors measure patience and are thus very useful strategically.
An agent may be simultaneously rational and impatient, that is, have a short expected life
where every game has some probability of being its last. Given rational agents, discount factors
and valuations are the agent’s primary endogenous attributes affecting reputation.

Strategic models of trust such as the ones we present in Chapters 3, 4, and 5 are required
in open agent communities if the strategies are to be evolutionary stable, that is, resilient to
invasion by undesirable strategies. While the models we present do not encompass all possible
favor scenarios, they provides a foundation from which to build.

In Chapter 6, we present the first methodology for evaluating broad classes of reputation
systems, particularly when faced with strategic agents. We employ dynamic systems theory
to find what behaviors a reputation system incentivizes, and use our methodology to compare
a variety of reputation systems from the related literature. We find that our discount factor
model of trustworthiness performs well.

7.1 Broader Implications

We focus on strategic agents because they maximize their own utility and are thus generally
more attractive to users. For example, a business would tune the decision models in one of its
webservice products to maximize profit, or a user of a peer-to-peer file sharing service might
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attempt to change the peer-to-peer client software to achieve faster downloads. An agent with
a high reputation may have considerably greater ability to cause harm to other agents than an
agent with a low reputation, enabling a malicious agent to strategically build up reputation to
maximize the harm it causes. A variation on our measures from Chapter 6 would be to use
a strategically malicious agent, whose utility is a function of the loss of other agents. Many
applications of reputation systems involving businesses and consumers, particularly those where
an autonomous agent is acting on behalf of the firm or individual, will be faced against rational
agents. However, a strong case may be made for modeling with strategically malicious agents
for use in social networks, in businesses that might expect malice from extortionists or angry
customers or competitors, or in using reputation as a basis for finding and tracking terrorists.

Seemingly terrible decisions, such as investing in a Ponzi scheme, can even be a rational
strategy under certain economic situations where investors know they will likely be bailed out
[Bhattacharya, 2003]. That the firm could strategically build its reputation and cause the
economic loss that it did is an indication that something should be improved either in the
interaction or reputation mechanism; a better reputation system might have prevented some of
the financial damage from occurring in the first place.

Our desiderata from Chapter 6 are measured against a rational agent that would take advan-
tage of any weaknesses of the reputation system, obtaining conclusive results for a reputation
system intended for human involvement requires a sizable controlled experiment. Such em-
pirical results would need to deal with the significant noise in the system and would require
sufficient data to conclude that a fixed point of a reputation is a stationary process. Evaluating
currently deployed systems with respect to our desiderata, although a significant undertak-
ing, would contribute to the understanding of our desiderata, reputation systems, and also the
rationality of human behavior.

The exact method that people use for discounting is still uncertain [Rubinstein, 2003], as
is the notion of what an optimal discount factor is [Weitzman, 2001]. Our work offers many
new methods to measure discount factors in different environments and enact upon knowledge
of agents’ discount factors. These results are beneficial not only to artificial intelligence, but
also to other fields where self-interested agents may behave strategically, such as psychology,
economics, and decision sciences.

7.2 Direct Future Work

Collusion, side-payments, and Sybil attacks (using many pseudonyms to boost or reset reputa-
tion) are exceptions when agents may appear to not act individually rational. Our desiderata
from Chapter 6 can be adapted to measure the reputation dynamics given a certain number of
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colluding raters attempting to boost the reputation of one scamming agent. To extend these
desiderata, the colluding raters should be treated as one agent in terms of utility. The repu-
tation of the scamming rater, that is, the colluding agent with the reputation inflated by the
other colluding raters, can then be used directly in the desiderata. In this way, our desiderata
could be extended to operate on an organizational level.

The biggest weakness of our desiderata list is the computational complexity required to
model reputation aggregation across a large number of agents and against strategic agents
with high discount factors. Because we simply exhaust all possible actions, the number of
states that must be computed is exponential with respect to the number of communicating
agents and their actions. Solving a specific reputation system behavior against a strategic
agent may be feasible with a simple reputation system and lead to an efficient solution, but
large and complex reputation systems, particularly those without closed form solutions and
highly domain-specific features (i.e., those having complex relationships between the reputation
system and the interaction model), exacerbate the matter. Graphing Ω can offer insight into the
dynamics of a reputation system, but visualising Ω may be nontrivial for systems that employ
reputations of high dimensions that do not collapse easily to a scalar value. Determining how
to adapt our desiderata or methodology to work well in complex scenarios is an interesting and
useful avenue for future work.

Although agents’ discount factors sometimes approximate agents’ behavior in finite-horizon
games, rational strategy can sometimes diverge sharply between the two settings, such as in
the classic iterated prisoner’s dilemma. We have focused on discounted infinite horizon games
because, few real-world interactions in our highly connected world, particularly in e-commerce,
are accurately modeled as isolated finite-horizon from the agents’ perspectives. Though perhaps
less practical, applying or adapting our desiderata for reputation systems with finite-horizon
games is still an interesting problem to further our understanding of reputation systems.

Investigating more complex favor interaction models is an open area for further work. Agents
could choose which agent to ask a favor, and use and learn joint probability distributions be-
tween additional parameters. This follows from many e-commerce situations, where agents can
choose to procure goods or services from a number of vendors. Consider an agent that pur-
chases a few boxes of printer paper on a monthly basis. The agent is faced with the problem of
adverse selection in choosing from which vendor to buy. The vendors will have different prices,
and each may have high or low quality paper and may deliver on-time or late. This situation
can be abstracted into the widely studied multiarmed bandit problem [Kelly, 1981, Vermorel
and Mohri, 2005], where an agent must make repeated discrete choices between transactions
with different uncertainties. Conversely, in a situation where agents are acting more as peers,
transactions are more equally important for each agent and moral hazard is significant. Exam-
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ples of this case are agents offering significant bandwidth in peer-to-peer file sharing and when
an agent is procuring a costly good or service. Whereas the multiarmed bandit problem has
been studied with a single adversarial agent [Auer et al., 1995], our discount factor framework
can apply in more complex settings.

When one agent chooses another agent when entering a reciprocal relationship, the second
agent can learn information about the first agent’s valuations, capabilities, and intertemporal
discounting simply from the knowledge that the first agent decided to enter the relationship.
Consider an online store that sells luxury watches. An agent that chooses to purchase from a
luxury watch selling agent likely has different valuations, capabilities, or discounting than an
agent that would choose to buy from a regular agent. The work of Chapter 5.1 can be expanded
to determine what agents can learn from other agent’s choices.

What would make a rational agent lie when rating another agent? Detection of subtle lies
is difficult and thus the marginal cost of a small lie may seemingly be worth even a small gain.
Further investigating the relationship between discount factors and incentives to lie, along with
effective detecting and sanctioning methods is a further area for future work.

Much work remains to strategize about and measure discount factors and to apply this
framework to various problem domains. However, strategic interactions with private discount
factors appears to be a way of bridging the gap between trust and game theory.
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APPENDIX A: Order Statistics

In this appendix, we present derivations of order statistics as may be found in a standard
textbook on order statistics [David and Nagaraja, 2003]. The PDF of the ith lowest value in a
probability distribution of N agents represented by PDF f and CDF F , fXi , is expressed as

fXi(x) =
Γ(N + 1)

Γ(i) · Γ(N − i+ 1)
(F (x))i−1 · (1− F (x))N−i · f(x). (1)

The first term of this function may also be written as Γ(N+1)
Γ(i)·Γ(N−i+1) = N !

(i−1)!(N−i)! . The expected
value of the ith order statistic can be written as

E(fXi(x)) =
∫ ∞

−∞

Γ(N + 1)
Γ(i) · Γ(N − i+ 1)

(F (x))i−1 · (1− F (x))N−i · f(x) · xdx. (2)

For the uniform distribution, the ith order statistic may be expressed simply as

E(fXi(x)) =
i

N + 1
. (3)

The order statistic PDF for the uniform distribution is the Beta distribution, commonly repre-
sented as V (i,N−i+1) when on the range of [0, 1]. The general PDF of the uniform distribution
can be expressed on the range of [a, b] as

fXi(x) =
Γ(N + 1)

Γ(i) · Γ(N − i+ 1)

(
x−a
b−a

)i
·
(

x−b
a−b

)N−i

x− a
. (4)

The order statistic PDF of the exponential distribution about mean k can be expressed as

fXi(x) =
Γ(N + 1)

Γ(i) · Γ(N − i+ 1)
ke−kNx · (ekx − 1)i−1. (5)
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