
Effective Recovery from Security Violations
Using Reversible Computing

Chris Hazard, Seongbeom Kim, and Brian Rogers
May 9, 2005

1. Introduction

 Attacks on computer systems come in many forms and have ranging levels of severity. As a

result many different types of security mechanisms exist, each of which attempts to prevent or detect

some set of these attacks. Some of these security mechanisms are dynamic, meaning that they try to

detect and stop attacks as they happen during the execution of an application. For example, a dynamic

security mechanism to prevent buffer overflow attacks may monitor all string buffer operations and

dynamically check the buffer bounds before each operation to make sure that it is only operating within

the bounds of the string. Typically, if this type of security mechanism detects that an operation will

overflow a buffer; it will simply terminate execution of the application.

 While these types of dynamic security mechanisms can protect the computer system by

preventing attacks such as buffer overflows, they create a new problem that results as a side effect of

terminating the application. Though they prevent the system from being controlled by the attacker,

terminating the application is still a denial of service (DoS) attack. Even though servers usually restart

processes, pending data may be lost. Repeated attacks can make other users' performance severely

degraded at best. The user will not be able to make forward progress because the application will

constantly have to restart. This also wastes CPU resources that could be used for running other services,

as service initialization is often more costly than sustained execution.

 Many dynamic security mechanisms have strong security properties, and can stop many types of

attacks, but it would be desirable to have a more graceful way to recover from these attacks. Buffer

overflows and some other attacks can be caused by an attacker supplying some input to a program that is

malicious or “tainted”. By the time an operation is reached that would cause a buffer overflow with the

input, it may not be known where the tainted input came from, or if any other safe value could be used in

place of the tainted one. This leaves no option but to simply exit the program and begin its execution

again. If a method existed to obtain a new valid value and undo any harm done by this operation, or to

throw away the malicious input altogether, then it may be possible to safely complete the operation and

finish executing the application without aborting. In this paper we study the feasibility and implement a

system that is capable of doing this. With the aid of a reversible computing system, we can “rewind” the

operations of an application from the point where a dynamic detection scheme detects an attack to the

point where the tainted input that resulted in the attack was obtained. Then we can throw this input away

and continue execution back in the forward direction with a new input.

 The remainder of this paper is organized as follows. Section 2 presents related work on different

types of system recovery that pertain to our approach. Section 3 discusses the details of how our

approach works and how it was implemented. Section 4 evaluates the implementation of our approach on

some test cases. In section 5 we discuss some of the important issues that need to be addressed with

regard to our proposed system, and we give our conclusions in section 6.

2. Related Work

2.1 Reversible Computing

Reversible computing is the ability of a computing system to revert back to any previous system

state from any system state. This does not necessarily mean that all system information is stored for

every instruction, but only the information required to make each instruction revert the system back to the

state before it executed. Many instructions, such as adding a constant, are inherently reversible, requiring

no such extra information.

Intuitively, reversible computing lends itself well for reversible debugging [3, 4, 5]. This feature

alone would not merit a commoditization of natively reversible computers. However, the quantum and

Newtonian physics of our universe underlying all of computing is itself reversible. It has been long

known between the fields of information theory and computer architecture that a large portion of dynamic

power consumption in processors is caused by the destruction of information, fighting the reversibility of

physics [1]. Regardless of the quality of transistors, this power consumption is inevitable in non-

reversible computing. Using adiabatic physical processes, reversible computing could keep the power

consumption and heat dissipation low while delivering high computational throughput. Additionally,

many types of quantum computers will require a reversible design in order to operate [6].

Because of the potential for quantum computing, power consumption benefits, and debugging

value, reversible computing has been receiving more attention lately. Much of this recent work started

with a group at MIT in the mid 1990’s. Vieri demonstrated a practical reversible computer architecture

called “Pendulum” in his 1995 MS thesis [2], and Frank investigated the implications of programming a

reversible computer in his 1999 PhD thesis [1]. All irreversible computations may be emulated by a

reversible computer, and the upper bounds on the computational overhead in terms of both memory and

algorithm complexity have been found [7]. Specialized Instruction Set Architectures have also been

explored for minimizing the amount of energy dissipation [15].

It may not be necessary or practical to have a fully reversible computer [1]. In lieu of full

reversibility, systems may perform checkpointing operations [8], or simply destroy old reverse

information in a manner that would minimize heating of the processor and attempt to reuse energy.

Reversible computing has been investigated for use in determining fail-safety in software design [16], but

to our knowledge has never before been used as a recovery method for system-level reliability and

security.

In our proposed system, untrusted input will have special status. When reversing from a fault

back to the source of last input, the questionable input will be destroyed. As discussed in [1], it is

possible to build an operating system capable of reversing an individual process. In this case, only the

malicious data sent to the affected process would be discarded.

2.2 Checkpointing

 Checkpointing is the act of saving the state of a running program so that it may be reconstructed

later in time. There are three levels where checkpointing can be implemented. They differ in the level of

user/programmer involvement.

 1. OS checkpointing: Here, checkpointing is performed by the operating system. Typically, any

program can be checkpointed by the operating system without any effort on the part of the programmer or

user. Standard process preemption can be viewed as a simple form of OS checkpointing [9][10].

 2. User-level, transparent checkpointing: Here, checkpointing is performed by the program itself.

Transparency is usually achieved by compiling the application program with a special checkpointing

library. Since checkpointing is performed on top of, rather in the operating system, the recoverability of

operating system state is an important issue. Programs must assume that their process ids may change

over time as the result of being checkpointed and restored [11][12].

 3. User-level, non-transparent checkpointing: Here, programmers actively incorporate checkpointing

into their programs, often with the help of libraries and preprocessors. Non-transparent checkpointing

obviously places a much larger burden on the programmer. The tradeoff is in performance and flexibility.

Programmers can specify the exact information that is needed for recovery, and thus checkpoint less

information than transparent checkpointers.

 There are several uses of checkpointing. The major use for checkpointing is fault-tolerance.

[13][14] This is typically called checkpointing with rollback recovery. At a periodic interval, the

application stores checkpoints to disk. If a failure occurs that causes the application to be terminated

prematurely, the application can restart from its most recent checkpoint, losing at most an interval's worth

of computation.

 Process migration is another use of checkpointing. Instead of storing a checkpoint to disk, the

checkpointing processor sends its checkpoint to another processor, which begins its computation from

this checkpointed state.

Checkpoints may also be stored for purposes of debugging a program. For example, most

debuggers have tools for examining checkpoints, which are created when a program exits abnormally.

 When a program is executing, its state is composed of the values in memory, the CPU registers,

and the state of the operating system (including the file system). Usually, the memory is divided into four

parts: code (or text), the global variables (or data), heap and stack. Of these, the global variables, heap and

stack need to be stored along with the registers in a checkpoint. Typically, the code is unchanged from the

program's executable file, and thus may be restored from there in the event of a failure.

 If the checkpointer is implemented in the operating system, then enough information can be

stored with the checkpoint to restore the view that the program had to the operating system at the time of

the checkpoint. If the checkpointer is implemented at user level, then it does not have the privileges to

restore the operating system, but instead can attempt to make the operating system appear as it was at the

time of the checkpoint.

 A transparent checkpointer should be able to rebuild as much state that is external to the

checkpointing process as possible. Besides operating systems internals and the file system, other external

states that can be reconstructed include the window system and the state of external servers.

 Most non-transparent checkpointers give the programmer primitives for storing and recovering

data that is in the global variables, stack and heap. However, the programmer is responsible for restoring

the execution state of the program upon recovery. Although this places a greater burden on the

programmer, it can afford functionalities such as restoring the checkpoint on a machine of differing

architecture form the checkpointing machine. This is because machine-dependent details such as memory

layout and the definition of stack frames are not part of the checkpoint.

 It seems reasonable to use checkpointing for recovering from security attacks. While existing

methods usually crash the program, it can graciously roll back to the last checkpointed state. However,

checkpointing machine and program state may take significant overhead and require large reliable

storage. Also, periodic checkpointing may not be fine-grained enough if we want to do rollback to exact

place where the error has occurred.

3. Our Approach

3.1 Main Idea

 The central idea of our approach is to use reversible computing with a dynamic security detection

mechanism (e.g. Stackguard [17] for detecting buffer overflows) so that we can recover more efficiently

from detected attacks and prevent DoS situations from resulting. Our reversible system operates in the

following way. Execution proceeds as normal in the forward direction at the start of an application, and it

is monitored by the dynamic detection mechanism. If a security fault is detected, such as a buffer

overflow that we consider in our implementation, the reverse mode of execution is initiated. Through the

use of reversible computing, we can execute each instruction of the program in reverse until we reach the

point where the previous external input was obtained. Then we discard this input, and obtain a new one.

Finally we continue execution in the forward direction again and if this new input is a valid one then we

will make further progress in the application without having to crash it.

 Even though the system is able to purge itself of malicious inputs, DoS attacks are not impossible,

just much more difficult. It takes a finite amount of time for the system to reverse execute the program

back to the point where the malicious input was received in order to purge itself of the message. If the

malicious messages are sent at a rate faster than the system is able to purge them, with much more

malicious input than legitimate input, then performance may be degraded enough to be considered a DoS.

However, the rate of malicious messages required to cause this effect would most likely be very high, in

the same manner as traditional traffic flooding DoS attacks.

3.2 Implementation

 We have implemented three main items in order to study this approach. Essentially with our

implementation we wanted to determine the feasibility of using reversible computing for our purposes,

and we wanted to understand some of the issues that must be addressed in order to implement a real-

world system of this type. First, we needed to choose an Instruction Set Architecture (ISA) that was very

functional, but that we could reverse instruction by instruction. The main tradeoff is that traditional ISAs

require larger history buffers whereas reversible ISAs require more work on writing the assembly code

(very few compilers are capable of generating code for a reversible ISA). We found that the standard

MIPS ISA works well for our purposes. In our implementation, we included all MIPS instructions with

the exception of floating point instructions and a few less recently used instructions.

 Secondly, we needed a way to execute these instructions in the forward and reverse direction to

model our system. We implemented an interpreter in Perl that could execute all of our ISA along with

some system calls to obtain external input and print output. The interpreter has the ability to change from

forward to reverse direction at any instruction in an application. Reversing an instruction completely

erases any changes in system state that the instruction caused, and returns the state to just before the

instruction was executed.

 Lastly, we have implemented some micro-applications in order to test our system. All of our

micro-applications contain some buffer overflow condition that can arise with certain inputs, and they

will be described more fully in the next section. For our dynamic buffer-overflow detection scheme we

use a Stackguard-like approach where the return addresses of functions are protected by a canary value

[17]. Before we return from a function, we check to see if the canary is still intact. If the canary is

corrupted, the system initiates reverse execution to purge the malicious input, handling the attack instead

of simply aborting the program as in existing schemes. By executing our micro-applications on our

interpreter we are able to show that our approach to handling security attacks is able to recover more

effectively than aborting the program, which leads to DoS attacks.

4. Results

 To evaluate the proposed recovery system, we wrote a micro-application that is vulnerable to the

stack-overflow attack. The following shows the C-version of the application. It simply gets user-provided

input, and stores the input into a 16-byte local buffer, and then echoes the input. Because the ‘get_msg’

function, like POSIX getstr(), has no boundary checking, any input longer than 16 bytes can overflow the

local buffer and can tamper the return address which is stored in the stack.

void main()
{
 proc_msg();
}

void proc_msg()
{
 char buf[16];
 get_msg(buf);
 prn_msg(buf);
}

The micro-application in C

To execute this application on our interpreter, we translated this C source into MIPS assembly by

hand. The following shows the important part of the translated assembly source.

19
20

23

 .globl main
main: # main has to be a global label
 ...
 jal proc_msg # call the function proc_msg
 ...

30
31
32
33
34
35
36
37

60
61
62
63
64

68
69
70
71
72
73

 .globl proc_msg
proc_msg:
 subi $sp, $sp, 4
 sw $ra, 0($sp) # push $ra to the top of stack
 addi $s1, $0, 0xcafebabe
 subi $sp, $sp, 4
 sw $s1, 0($sp) # push canary value to the stack
 subi $sp, $sp, 16 # allocate 16 byte buffer
 ...
 # call get_msg to get input
 ...
 # call prn_msg to print output
 ...
 addi $sp, $sp, 16 # adjust stack before return
 lw $s1, 0($sp)
 addi $sp, $sp, 4 # pop canary from the top of sta ck
 addi $s2, $0, 0xcafebabe
 beq $s1, $s2, Pass # check canary value
 ...
 li $v0, 10 # terminate program
 syscall
Pass:
 lw $ra, 0($sp)
 addi $sp, $sp, 4 # pop $ra from the TOS
 jr $ra # return

The micro-application in MIPS assembly

Once ‘main’ calls ‘proc_msg’, the return address is pushed onto the stack and then pushed the

pre-determined canary constant, 0xCAFEBABE, is pushed on top of it. To allocate the 16-byte local

buffer, the stack pointer is decremented accordingly (line 32~37). At this time, the stack will look like the

following.

When attackers overflow the buffer by providing a longer message than 16 bytes, they may

tamper with the return address but cannot avoid mangling the canary value. By checking the integrity of

the canary value, we can dynamically detect whether there is a stack overflow attack. This is the main

idea of StackGuard [17] which we adopted in this evaluation. Line 62 through 64 pops the canary from

the stack and checks the sanity. If the canary value is intact, the return address from the stack is used to

buf[0…3]

buf[4…7]

buf[8…11]

buf[12…15]

canary value (0xcafebabe)

return address

return. Otherwise, existing scheme would terminate the program (line 68~73).

Instead of terminating the program, our scheme can trigger reverse execution until we reach the

mallicious input. To trigger the reverse execution, we defined a new instruction, ‘reverse’. Line 68, 69 of

the above example is replaced by ‘reverse’ to support our reverse-execution recovery mechanism.

We presented three screen-shots below, each of which shows the result from a different scenario.

The first screen-shot shows the result when the stack overflow attack succeeds. We can see that the

control flow is tampered by malicious input. The second screen-shot shows that the dynamic detection

scheme prevents the attack by terminating the program. However, we need to restart the program to serve

further requests from valid users. Finally, the third screen-shot shows the result from our recovery

scheme. Instead of terminating the program, the program is executed backward until new input can be

typed again.

5. Discussion

5.1 Improving Recoverability Coverage

 Even though our method can prevent immediate attacks from occurring, it is still quite possible

that the program will become stuck in a loop, causing a denial of service. Consider the following

example function behavior:

 1. Read string into buffer1

 2. Read string into buffer2

 3. Perform some operations

 4. Verify stack integrity (check canary value)

 5. Return from function

In this example, if the buffer overflow was exploited with buffer2, our security method will recover

properly. The integrity check will fail at step 4, the system will reverse back to step 2, and await buffer2

to be read in again. However, if buffer1 was exploited instead of buffer2, then the system has no way of

knowing to revert all the way back to step 1. The system will revert back to step 2, re-read in buffer2, and

fall victim to the same exploit regardless of what is read in for buffer2. Because this causes the

application to fall into an infinite loop, it is effectively worse than a denial of service which simply

terminates the program. In falling into an infinite loop, the program is using CPU resources that could be

used by other applications, and additionally could not be automatically respawned without a sophisticated

process monitor. We will refer to this specific vulnerability as a latent input vulnerability.

 We present both a sophisticated and simple way of addressing this issue, which can be used

together for maximal security protection. The sophisticated method increases the coverage of

vulnerabilities that can be recovered by reversible computing, while the simple method reduces the harm

done by vulnerabilities that penetrate the system’s recovery capabilities.

 The sophisticated method borrows conceptually from taint checking. Taint checking is the

method of marking input as not trusted (tainted), and propagating the taint flag to any other data that is

affected by it. For example, if a tainted value is added to an untainted value, the result is tainted. The

system can then check if a value is tainted before using it in vulnerable situations, such as setting the

program counter to a dynamically computed address. In order to know how far back for the processor to

reverse, every datum (may be byte, word, cache line –many sizes have proven successful in taint

checking) needs to maintain which inputs have affected it. When two tagged data are combined, the

result is tagged with the combination of the input tags of both data. When an attack is detected, the

processor can reverse back to the earliest input that possibly influenced the exploit, purging itself of all

the subsequent input (see section 5.3 for a discussion as to how this excess purging can be made less

detrimental). We will refer to these input markers as tags, and refer to data affected by input as tagged

data.

 With or without reversible computing, it is quite infeasible to maintain every input that has

affected a datum, so this must be constrained. It is only feasible to retain a small number of the most

recent inputs for tag propagation. Retaining the 4 most recent inputs would allow for the successful

purging of an attack that had a latent input vulnerability with 3 or fewer inputs between the malicious

input being received and the exploit detected. By retaining a small number of the most recently inputs for

tagging, such as 3 or 4, all but the most difficult and complex exploits against latent input vulnerabilities

can be recovered. To keep a truncated history, old input tags must be discarded. This can be done by

indexing inputs by tag offset, and treating the tag bits as a shift register. For example, tagging the

previous 4 inputs would require 4 additional bits per datum, and the most recent input tag would be the

first of the 4 bits. When a new input is received, all tags throughout the memory hierarchy would be

shifted by one bit. This approach allows simple hardware combining of tags in an operation, as only a

bitwise OR is required. The main drawback of this approach is that a signal line to all of the memory

hierarchy is required in the architecture. We have not been yet come up with a more effective solution

that does not have such a signal line requirement in some capacity.

 Aggressive tagging in the architecture would provide a conservative approach to purging input.

For example, the program counter (PC) should be tagged when an instruction branches based on the

comparison of a tagged value, and the PC’s tags may potentially be used to tag all instructions. If an

exploit is detected with untagged data, then it would be safe to assume that the malicious input came

earlier than the beginning of the tagged input history. In this case, the program should abort, as it cannot

reverse far enough.

The second and simple method to prevent latent input vulnerabilities from being exploited is to

keep a counter for each of the currently tagged inputs (only the most recent input if tagging is not used).

Every time a new input is received from a reverted system read, the counter for that read is incremented.

If the counter reaches a certain specified threshold, then the program will be aborted. This way, if an

attack is too complex for our security method to prevent, the attack will do not cause any more harm than

if reversibility were not utilized. Using a threshold only decreases the effectiveness of the reversibility

slightly; if more malicious messages are being received than legitimate traffic, then the application may

still be frequently aborted. Increasing the threshold value can be used to counter this and prevent the

process from being aborted. Interestingly, if a particular high-volume attack on a service-based program

is determined to not be a latent input vulnerability and the administrator does not wish to raise the

threshold value for fear of other latent input vulnerabilities, the process can still be prevented from

aborting. Inserting inert messages, possibly even erroneous, into the program’s input would prevent the

counters from continually increasing from malicious messages, thus preventing the program from

aborting.

5.2 OS Implications

 Instead of assuming a purely reversible computer, our approach assumes that the reversible

computer has the ability to reverse individual processes; different processes running simultaneously may

be running in different directions. This is to allow the operating system to behave differently when

executing in reverse than it would when executing forward, which is required in order to provide the

functionality to purge malicious inputs. We also assume the paradigm discussed by Michael Frank

involving processes recalling output sent to other processes [1]. When a process reverses an output, it

reverses the execution direction of the process it sent the message to until the message is purged from that

process. This will be discussed further in section 5.3.

 Given that the operating system kernel is always running in the forward direction, it needs to

have both forward and reverse implementations of all of its services. Both software and hardware

interrupts change the processor to run forward execution on the corresponding kernel function. To

support the reversal of a kernel function executing in the forward direction, a combination of the

instruction set architecture and kernel code must obtain the parameters, return values, and state

information from the kernel call when it happened in the forward direction.

 Because each process can be running in either the forward or reverse direction, each process must

have its own execution history buffer. Realistically, the history buffers will be finite in length, so the

process can only reverse execute back to the beginning of the buffer. The oldest history data would be

continuously destroyed to make room for the new history data. If the process attempts to reverse back to

a point prior to the start of the history buffer, then the process must be aborted.

5.3 Implied Message Paradigm

 We initially considered implementing both a message-based and stream-based reversible input

system call. The message-based implementation would read input line-by-line, while the stream-based

implementation would read input character-by-character. We soon realized that the major framing

(message misalignment) implications that arise when part of a stream is lost would make purging

malicious input very difficult. Designing a system based around messages and events rather than streams

is not a too constraining, as Microsoft Windows uses this approach (as opposed to Unix architectures,

which are more stream-based). One major implication of using the reversible architecture is that all

applications using these message communications need to be able to handle the “take-back” of a message.

Most systems will support this transparently, as the operating system can throw the targeted process in

reverse to purge it of the message taken back. However, all network protocols and peripherals must also

support the ability to “take-back” messages.

In systems of higher interdependence, this cascade of message “take-back” would throw much of

the system into reverse execution until the earliest relevant input was purged, then resume and reconstruct

execution. From a user-interface perspective, it may be useful to have a separate part of the interface,

perhaps closely tied to the kernel, dedicated to remembering input that has been purged. As long as it

keeps the transaction information on a per-program basis, this interface could resend messages purged

from other applications or machines on the network. By allowing the user to manage communications to

the machine, the user could be immediately notified of any information rejected by almost any type of

error. This would help prevent user frustration caused by information purged due to errors by allowing

the user to automatically reenter the data.

6. Conclusion

 We have shown that future reversible computing architectures could allow us to more effectively

recover from dynamically detected attacks by preventing DoS scenarios. In addition, we have identified

and addressed some key issues that must be addressed in a real-world system of this type. We presented

two alternative schemes to more robustly handle attacks that result from different input sources through a

type of taint analysis and/or counters to limit the maximum number of reversals per input. We also

analyzed some of the main OS issues and the extra functionality that must be provided for a reversible

system that is capable of handling multiple processes simultaneously. Finally, we made a case for a

message-based paradigm that would make things more feasible for reversible systems in handling

malicious inputs. It appears that reversible computing offers promising ways to recover from various

types of security attacks by allowing us to recover efficiently and prevent attacks from turning into DoS

situations.

REFERENCES

[1] Michael P. Frank. Reversibility for Efficient Computing. PhD thesis, Massachusetts Institute of

Technology, 1999.
[2] Carlin J. Vieri. Pendulum: A reversible computer architecture. Master's thesis, MIT Artificial

Intelligence Laboratory, 1995.
[3] S. Lewis. Techniques for Efficiently Recording State Changes of a Computer Environment to

Support Reversible Debugging. Master’s thesis, University of Florida, 2001.
[4] T. Akgul and V. J. Mooney. Instruction-level reverse execution for debugging. Technical Report

GIT-CC-02-49, Georgia Institute of Technology, September 2002.
[5] B. Biswas, R. Mall. Reverse execution of programs. ACM SIGPLAN Notices, 34(4). pp 61-69.

1999.
[6] T. Hey. Quantum computing: an introduction. Computing & Control Engineering Journal, 10(3).

pp 105-115. 1999.
[7] H. Buhrman, J. Tromp, P. Vitanyi. Time and Space Bounds for Reversible Simulation. Proc.

International Conference on Automata, Languages and Programming, Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 2001

[8] A. Griewank, A. Walther. Algorithm 799: revolve: an implementation of checkpointing for the
reverse or adjoint mode of computational differentiation. ACM Transactions on Mathematical
Software (TOMS), 26(1). pp 19-45. 2000.

[9] B. A. Kingsbury and J. T. Kline, Job and process recovery in a UNIX-based operating system. In
Conference Proceedings, Usenix Winter 1989 Technical Conference, pages 355-364, San Diego,
CA, January 1989.

[10] M. Russinovich and Z. Segall. Fault-tolerance for off-the-shelf applications and hardware. In 25th
International Symposium on Fault-Tolerant Computing, pages 67-71, Pasadena, CA, June 1995.

[11] R. H. B. Netzer and M. H. Weaver. Optimal tracing and incremental reexecution for debugging
long-running programs. In ACM SIGPLAN ’94 Conference on Programming Language Design
and Implementation, pages 313-325, Orlando, FL, June 1994.

[12] J. Long W. K. Fuchs and J. A. Abraham. Implementing forward recovery using checkpointing in
distributed systems. In 2nd IFIP Working Conference on Dependable Computations for Critical
Applications, pages 20-27, February 1991.

[13] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing under Unix. In
Conference Proceedings, Usenix Winter 1995 Technical Conference, pages 213-223, January
1995.

[14] Y. Huang, C. Kintala, and Y-M. Wang. Software tools and libraries for fault tolerance. IEEE
Technical Committee on Operating Systems and Application Environments, 7(4):5-9, Winter
1995.

[15] J. S. Hall. A reversible instruction set architecture and algorithms. Physics and Computation, pp
128--134, 1994.

[16] P. Bishop. Using Reversible Computing to Achieve Fail-safety. ISSRE 97, IEEE Computer
Society Press, 1997.

[17] C. Cowan, C. Pu, and et al. StackGuard: Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks. Proc. 7th USENIX Security Conf, 1998.

