A Fresh Look at Trust and Reputation Systems

Christopher J. Hazard
cjhazard@ncsu.edu
North Carolina State University
February 13, 2009
Trust & Reputation

▶ What is Trust?
 ▶ presumption of fulfilled action
 ▶ assured reliance of character, ability, strength, or truth (Merriam-Webster)

▶ What is Reputation?
 ▶ Belief that something is a certain way
On Computational Trust...

- "Never trust a computer you can’t throw out a window.” - Steve Wozniak
Trust Within Autonomous Agents

- Many applications
 - automated procurement, web services, recommender systems, personal assistant agents
- Trust research spans disciplines
 - Will you buy food from company X?
 - Are you telling the truth?
- Even within Computer Science
 - No common definition
 - No common metrics to compare one system to another
 - No common criteria or desiderata
Contribution:

- A set of common dimensions to categorize trust systems
- A set of common desiderata for building trust systems
- A set of common metrics to compare trust systems
- Results comparing 5 widely cited models, and one new model...
Outline

Trust System Classification

Desiderata for Trust Systems

Trust System Metrics

Performance Comparison

Conclusion
Common Dimensions Overview

- Incentive Compatibility (RHJ, D)
- Access v Action (RHJ, AG, JIB)
- Focus on Adverse Selection (SS, JIB, D, RHJ)
- Focus on Moral Hazard (SS, JIB, D, RHJ)
- Context Dependency (SS, JIB, MHM AG)
- Aggregation Breadth (RHJ, JIB, MHM, AG, D)
Dimension: Incentive Compatibility

- Incentive compatibility: honesty is rational
- If reputation is primary mechanism, then usually no.
 - e.g. eBay
- If incentive compatible mechanism, then yes.
 - e.g. Fly on a commercial airline - buy ticket first
Dimension: Access v Action

- **Access Trust**
 - Identity & Permissions
 - Security & encryption domain
 - Enables action trust
 - e.g. Account for online banking, Kerberos

- **Action Trust**
 - Provision, delegation, reciprocation, good-faith, etc.
 - e.g. eBay, Epinions
 - Focus of remainder of classification
Dimension: Focus on Adverse Selection

- Intrinsic quality: fixed ability/attribute
- Reliability, collaborative filtering
- Cause: information asymmetry, cure: signalling
- Often with infrequent interaction
- Can measure with statistics, but caveats
- e.g. Epininions, Jøsang '98
Dimension: Focus on Moral Hazard

- Moral Hazard: whether to uphold standards or promises
- Cause: rationalism, cure: sanctioning
- Often with frequent interaction
- Cannot measure by standardly applying statistics
- e.g. Contrite tit-for-tat (Sudgen ’86, Boyd ’89)
- Few systems focus only on moral hazard
Notes on Adverse Selection and Moral Hazard

- Completely independent dimensions
- Found together in most real-world environments
- Dual meanings of subjective
 - Qualified, affective
 - Relative to self (moral hazard)
- Objective is either
 - Mesurable
 - Global metric (adverse selection)
Dimension: Context Dependency

- Number of different dimensions of reliability measures used

- Examples:
 - Subjective (affective): 0
 - Probability of positive interaction (Jøsang ’98): 1
 - Discount factor & reliability (Smith & desJardins ’09): 2
 - Video game review (graphics, sound, gameplay, etc.): 4
 - Review of a manufacturer’s product lineup: N
Dimension: Aggregation Breadth

- Individual accumulation (decentralized) v global reputation (centralized)
- Prejudice, priors, & credentials
- e.g. eBay v Netflix v Lone observations (Sen ’02)
Aggregation Mechanism

- Closely coupled with Aggregation Breadth
- Supported by JIB
- Popular methods
 - Summation (eBay)
 - Bayesian (Jøsang ’99, Hazard ’08)
 - Discrete values (Cognitive approaches)
 - Belief models (Yu & Singh ’02)
 - Fuzzy models (Sabater & Sierra ’01)
 - Flow models (Pagerank, Eigentrust)
Trust System Desiderata Overview

- Evidential (adverse selection, moral hazard)
- Aggregable (adverse selection, aggregation breadth)
- Viable/tractable
- Robust (moral hazard)
- Flexible (combine info from contexts)
- Privacy enhancing (collection minimization)
Trust System Metrics: Notation

- **Agent type:** $\theta \in \Theta$
- **Current reputation (projection):**
 $$r \in [R, \bar{R}]$$
- **Next reputation function:** Ω
 $$r' = \Omega_\theta(r)$$
- **Fixed point reputation function:** χ
 $$\chi(\theta) = \text{SELECT}\{r \in [R, \bar{R}] : r = \Omega_\theta(r)\}$$
 - SELECT is max, min, second highest, etc. depending on Trust System
- **How to select SELECT? ...**
Dynamic Reputation Graphs
Ideal & Good Trust Systems

\[\begin{array}{c}
\chi \\
r' \\
R \\
\end{array} \quad \begin{array}{c}
\chi \\
r \\
R \\
\end{array}
\]

\text{ideal}

\text{good (unchanging)}
Trust System Metric 1: Unambiguity

- Each type should asymptotically map to a single reputation value

\[\forall \theta \in \Theta : \left| \{ r \in [\underline{R}, \overline{R}] : r = \Omega_\theta(r) \} \right| = 1 \]

- If not, then reputation a combination of prejudice & meaningless
Ambiguous Trust Systems
Trust System Metric 2: Monotonicity

- Ideally Patient Strategic (IPS) agent
 - Infinite horizon, maximize utility
 - IPS agent b, other agent a
 - $E(U_b(\theta_a)) = \lim_{\tau \to \infty} \max_{\sigma_b} \frac{1}{\tau} \sum_{t=0}^{\tau} u(t, \sigma_b, t, \theta_a)$

If θ_a is weakly preferable to θ_b to IPS agent c, that is,

$E(U_c(\theta_a)) \geq E(U_c(\theta_b))$, then a’s asymptotic reputation should not be lower than b’s reputation.
Trust System Metric 3: Convergence

- Reputation should converge quickly near the fixed point
- \(\left| \frac{d\Omega}{dr} \right| < 1 \) and minimized
- \(\frac{d\Omega}{dr} < 0 \): oscillate
- Lyupanov stability may be acceptable
Non-converging Trust Systems

![Graph showing chaotic/catastrophic and self-affirming trust systems](image)
Trust System Metric 4: Accuracy

- Error: $\epsilon \in [0, 1]$
- Distance from ideal: $\epsilon_\theta(r) = \frac{|\chi(\theta) - \Omega_\theta(r)|}{R - \bar{R}}$
- Average Reputation Measurement Error (ARME): $E(\epsilon_\theta) = \int_R^R \epsilon_\theta(r) dr$
- ARME minimized to distribution of types
 - PDF of θ, $f(\theta)$
 - minimize $E(\epsilon) = \int_\Theta f(\theta) \cdot E(\epsilon_\theta) d\theta$
Differing Accuracy

- Slow gain, fast spend
- Fast gain, slow spend

February 13, 2009
Christopher J. Hazard, North Carolina State University
Performance Comparison

- Chose systems that
 - Measured reputation, not just aggregator
 - Diversity of models
 - Straightforward implementation
 - Connect reputation with decisions/utility

- Scenario
 - Take turns deciding to offer favors, one turn for each agent each round
 - Can spend own utility ($1-$12) to improve other’s utility ($10-$30)
 - Agents discount the future (0.0 - 0.6)
 - Rational agents (moral hazard)
Utility & Decisions

- Probabalistic Reciprocity, Discount Factor: specify utility directly
- Others: utility based on reputation, per Zacharia & Maes '00
 - Linear relationship: risk neutral
 - sublinear relationship: risk averse
 - superlinear relationship: risk seeking
Probabalistic Reciprocity

- Sen ’02
- Agent keeps balance of favors
- Higher favor debt, lower cost of favor \rightarrow higher probability of offering favor
- Sigmoid function
Probabilistic Reciprocity Graph

- Large margins
- Small margins
- \(W = r \)

February 13, 2009 Christopher J. Hazard, North Carolina State University
Discount Factor

- Hazard ’08, Smith & desJardins ’09
- Trustworthiness \sim patience
- Model interaction from other agent’s perspective based on future utility
- Assess constraints on discount factor (e.g. < 0.5)
- Use expected value of discount factor in modeling utility
Discount Factor Graph

\[W = r \]

February 13, 2009
Christopher J. Hazard, North Carolina State University
Beta Model

- Jøsang ’98
- Quantize interactions into positive and negative
- Assume underlying probability agent will offer positive v negative result
- Model via Beta distribution
Beta Model Graph
Certainty Model

- Wang & Singh '06, '07
- Quantize to positive & negative like Beta model
- Use Dempster-Shafer model of evidence-based belief: probability & uncertainty
- Also tested against group of 3 agents, aggregating evidence
Certainty Model Graph

- network & individual, probability
- individual, probability
- network, belief
- $\Omega=r$

Probability of Positive Encounter
Probability of Positive Encounter'
TRAVOS Model

- Teacy, Patel, Jennings, Luck '06
- Quantize to positive & negative like Beta model
- Subdivide reputation space into 5 regions (Beta distribution), find region with largest area under PDF, largest area is certainty
- To communicate reputation, normalize magnitude preserving mean and standard deviation
TRAVOS Model Graph

- network probability-certainty
- individual probability-certainty
- network probability
- $W=r$
- Probability of Positive Encounter

February 13, 2009
Christopher J. Hazard, North Carolina State University
Sporas Model

- Zacharia & Maes ’00
- Reputation measured on range
- Ratings dampened with new measurements
Sporas Model Graph

- superlinear
- linear
- sublinear
- $\Omega = r$
Results

<table>
<thead>
<tr>
<th>Trust System</th>
<th>Unambig.</th>
<th>Monotonic</th>
<th>Converge</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob. Reciprocity</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>0.2</td>
</tr>
<tr>
<td>Discount Factor</td>
<td>yes</td>
<td>yes</td>
<td>< 0.1</td>
<td>0.02</td>
</tr>
<tr>
<td>Beta</td>
<td>no</td>
<td>no</td>
<td>no+</td>
<td>0.3</td>
</tr>
<tr>
<td>Certainty</td>
<td>weakly*</td>
<td>yes</td>
<td>0.9</td>
<td>0.37</td>
</tr>
<tr>
<td>TRAVOS</td>
<td>no</td>
<td>yes</td>
<td>0.9</td>
<td>0.32</td>
</tr>
<tr>
<td>Sporas</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>0.31</td>
</tr>
</tbody>
</table>

*weakly unambiguous means ambiguous points difficult to reach

+ converged on superlinear case
Conclusions

- Trust system metrics useful for comparison within a domain
- Discount Factor shows considerable promise, but does not yet support non-discrete choices
- Desiderata and metrics presented are not the final word
 - Are IPS agents the best comparison for monotonicity?
 - Absolute mean deviation best error measure?
 - Evaluating multi-context models
“Never trust anything that can think for itself if you can’t see where it keeps its brain.” - J.K. Rowling, *Harry Potter and the Chamber of Secrets*