Effective Recovery from Security Violations
Using Reversible Computing

Chris Hazard, Seongbeom Kim, and Brian Rogers
May 9, 2005

1. Introduction

Attacks on computer systems come in many formshawe ranging levels of severity. As a
result many different types of security mechanisiist, each of which attempts to prevent or detect
some set of these attacks. Some of these semgitiianisms are dynamic, meaning that they try to
detect and stop attacks as they happen duringcdeition of an application. For example, a dynamic
security mechanism to prevent buffer overflow dtsamay monitor all string buffer operations and
dynamically check the buffer bounds before eachiaifmm to make sure that it is only operating withi
the bounds of the string. Typically, if this typEsecurity mechanism detects that an operatioln wil
overflow a buffer; it will simply terminate execati of the application.

While these types of dynamic security mechanisamsprotect the computer system by
preventing attacks such as buffer overflows, thregte a new problem that results as a side effect o
terminating the application. Though they prevéet$ystem from being controlled by the attacker,
terminating the application is still a denial of\dee (DoS) attack. Even though servers usuabyare
processes, pending data may be lost. Repeatetsattan make other users' performance severely
degraded at best. The user will not be able toenfiaikvard progress because the application will
constantly have to restart. This also wastes GROurces that could be used for running other cesyi
as service initialization is often more costly tlsustained execution.

Many dynamic security mechanisms have strong ggqroperties, and can stop many types of
attacks, but it would be desirable to have a moseaful way to recover from these attacks. Buffer
overflows and some other attacks can be caused bttacker supplying some input to a program that i
malicious or “tainted”. By the time an operatigréached that would cause a buffer overflow with t
input, it may not be known where the tainted ingarme from, or if any other safe value could be used
place of the tainted one. This leaves no optidrtdsimply exit the program and begin its exeautio
again. If a method existed to obtain a new vadithe and undo any harm done by this operatiorg or t
throw away the malicious input altogether, thematy be possible to safely complete the operation an

finish executing the application without aborting. this paper we study the feasibility and impleire

system that is capable of doing this. With theddid reversible computing system, we can “rewitid
operations of an application from the point whedymamic detection scheme detects an attack to the
point where the tainted input that resulted indttack was obtained. Then we can throw this iampay
and continue execution back in the forward dirattdth a new input.

The remainder of this paper is organized asvaloSection 2 presents related work on different
types of system recovery that pertain to our apgro&ection 3 discusses the details of how our
approach works and how it was implemented. Sedtiewaluates the implementation of our approach on
some test cases. In section 5 we discuss sorhe ghportant issues that need to be addressed with

regard to our proposed system, and we give oudgsions in section 6.

2. Related Work
2.1 Reversible Computing

Reversible computing is the ability of a computéygtem to revert back to any previous system
state from any system state. This does not nadlgss@an that all system information is stored for
every instruction, but only the information requirt® make each instruction revert the system bathe
state before it executed. Many instructions, aghdding a constant, are inherently reversibtglinag
no such extra information.

Intuitively, reversible computing lends itself wédr reversible debugging [3, 4, 5]. This feature
alone would not merit a commoditization of nativedyersible computers. However, the quantum and
Newtonian physics of our universe underlying altomputing is itself reversible. It has been long
known between the fields of information theory aothputer architecture that a large portion of dyigam
power consumption in processors is caused by thtewidion of information, fighting the reversibyliof
physics [1]. Regardless of the quality of trarsist this power consumption is inevitable in non-
reversible computing. Using adiabatic physicakpsses, reversible computing could keep the power
consumption and heat dissipation low while delivgrigh computational throughput. Additionally,
many types of quantum computers will require argtde design in order to operate [6].

Because of the potential for quantum computing,grad@nsumption benefits, and debugging
value, reversible computing has been receiving ratiention lately. Much of this recent work stait
with a group at MIT in the mid 1990’s. Vieri denstrated a practical reversible computer architectur
called “Pendulum” in his 1995 MS thesis [2], andrik investigated the implications of programming a
reversible computer in his 1999 PhD thesis [1]l ildversible computations may be emulated by a

reversible computer, and the upper bounds on thmpatational overhead in terms of both memory and

algorithm complexity have been found [7]. Speeidi Instruction Set Architectures have also been
explored for minimizing the amount of energy dissipn [15].

It may not be necessary or practical to have & felersible computer [1]. In lieu of full
reversibility, systems may perform checkpointingigtions [8], or simply destroy old reverse
information in a manner that would minimize heatirighe processor and attempt to reuse energy.
Reversible computing has been investigated fofrudetermining fail-safety in software design [16Uit
to our knowledge has never before been used aeery method for system-level reliability and
security.

In our proposed system, untrusted input will hgwectal status. When reversing from a fault
back to the source of last input, the questionadgat will be destroyed. As discussed in [1]sit i
possible to build an operating system capablewafrsing an individual process. In this case, dinéy

malicious data sent to the affected process woelldifcarded.

2.2 Checkpointing

Checkpointing is the act of saving the state frming program so that it may be reconstructed
later in time. There are three levels where checkimg can be implemented. They differ in the leogl
user/programmer involvement.

1. OS checkpointing: Here, checkpointing ifqrened by the operating system. Typically, any
program can be checkpointed by the operating sysii¢imout any effort on the part of the programmeer o
user. Standard process preemption can be viewadiagple form of OS checkpointing [9][10].

2. User-level, transparent checkpointing: Heheckpointing is performed by the program itself.
Transparency is usually achieved by compiling thaieation program with a special checkpointing
library. Since checkpointing is performed on toprather in the operating system, the recoverstofit
operating system state is an important issue. Bragmust assume that their process ids may change
over time as the result of being checkpointed astbred [11][12].

3. User-level, non-transparent checkpointiigre, programmers actively incorporate checkpogntin
into their programs, often with the help of libesiand preprocessors. Non-transparent checkpointing
obviously places a much larger burden on the prograr. The tradeoff is in performance and flexililit
Programmers can specify the exact informationithaéeded for recovery, and thus checkpoint less
information than transparent checkpointers.

There are several uses of checkpointing. The merfor checkpointing is fault-tolerance.

[13][14] This is typically called checkpointing witollback recovery. At a periodic interval, the

application stores checkpoints to disk. If a faloccurs that causes the application to be terednat
prematurely, the application can restart from itsstmecent checkpoint, losing at most an intervedgth
of computation.

Process migration is another use of checkpointirgiead of storing a checkpoint to disk, the
checkpointing processor sends its checkpoint tohengrocessor, which begins its computation from
this checkpointed state.

Checkpoints may also be stored for purposes ofgighg a program. For example, most
debuggers have tools for examining checkpointschvhie created when a program exits abnormally.

When a program is executing, its state is compo$#éue values in memory, the CPU registers,
and the state of the operating system (includiedita system). Usually, the memory is divided ifaar
parts: code (or text), the global variables (oa)iateap and stack. Of these, the global variahksg and
stack need to be stored along with the registeascimeckpoint. Typically, the code is unchangedftbe
program's executable file, and thus may be restiooed there in the event of a failure.

If the checkpointer is implemented in the opemBgstem, then enough information can be
stored with the checkpoint to restore the view thatprogram had to the operating system at the ¢ifn
the checkpoint. If the checkpointer is implemerdedser level, then it does not have the privileges
restore the operating system, but instead can pttienmake the operating system appear as it widie at
time of the checkpoint.

A transparent checkpointer should be able to telas much state that is external to the
checkpointing process as possible. Besides opgrayistems internals and the file system, othemreate
states that can be reconstructed include the wird@tem and the state of external servers.

Most non-transparent checkpointers give the pragrar primitives for storing and recovering
data that is in the global variables, stack angbhdawever, the programmer is responsible for rexjo
the execution state of the program upon recoveltiiofigh this places a greater burden on the
programmer, it can afford functionalities suchestaring the checkpoint on a machine of differing
architecture form the checkpointing machine. Thibecause machine-dependent details such as memory
layout and the definition of stack frames are raot pf the checkpoint.

It seems reasonable to use checkpointing for exany from security attacks. While existing
methods usually crash the program, it can gracyawdll back to the last checkpointed state. Howgver
checkpointing machine and program state may tajefsiant overhead and require large reliable
storage. Also, periodic checkpointing may not Inefgrained enough if we want to do rollback to éxac

place where the error has occurred.

3. Our Approach
3.1Main Idea

The central idea of our approach is to use relblersiomputing with a dynamic security detection
mechanism (e.g. Stackguard [17] for detecting mdferflows) so that we can recover more efficigntl
from detected attacks and prevent DoS situatiam fiesulting. Our reversible system operatesén th
following way. Execution proceeds as normal inftvevard direction at the start of an applicatiand it
is monitored by the dynamic detection mechanisiha skecurity fault is detected, such as a buffer
overflow that we consider in our implementatiore teverse mode of execution is initiated. Throtigh
use of reversible computing, we can execute eathuiction of the program in reverse until we retieh
point where the previous external input was obthinEhen we discard this input, and obtain a neg on
Finally we continue execution in the forward difentagain and if this new input is a valid one then
will make further progress in the application witihtvaving to crash it.

Even though the system is able to purge itsethalicious inputs, DoS attacks are not impossible,
just much more difficult. It takes a finite amouwnfttime for the system to reverse execute thenarng
back to the point where the malicious input waiead in order to purge itself of the messagehdf
malicious messages are sent at a rate fasterhtbaystem is able to purge them, with much more
malicious input than legitimate input, then perfarmoe may be degraded enough to be considered a DoS.
However, the rate of malicious messages requireduse this effect would most likely be very hiigh,
the same manner as traditional traffic flooding dtacks.

3.2 Implementation

We have implemented three main items in ordetudysthis approach. Essentially with our
implementation we wanted to determine the feasjtilf using reversible computing for our purposes,
and we wanted to understand some of the issuestigttbe addressed in order to implement a real-
world system of this type. First, we needed toosiegoan Instruction Set Architecture (ISA) that wesy
functional, but that we could reverse instructigrirstruction. The main tradeoff is that tradithSAs
require larger history buffers whereas reversisléd require more work on writing the assembly code
(very few compilers are capable of generating doda reversible ISA). We found that the standard
MIPS ISA works well for our purposes. In our immientation, we included all MIPS instructions with
the exception of floating point instructions anfita less recently used instructions.

Secondly, we needed a way to execute these itisttadn the forward and reverse direction to
model our system. We implemented an interpret&eiri that could execute all of our ISA along with

some system calls to obtain external input and prtput. The interpreter has the ability to crefrgm

forward to reverse direction at any instructiomimapplication. Reversing an instruction compjetel
erases any changes in system state that the itistreaused, and returns the state to just befare t
instruction was executed.

Lastly, we have implemented some micro-applicationorder to test our system. All of our
micro-applications contain some buffer overflow dition that can arise with certain inputs, and they
will be described more fully in the next sectidror our dynamic buffer-overflow detection scheme we
use a Stackguard-like approach where the returreasils of functions are protected by a canary value
[17]. Before we return from a function, we cheglsee if the canary is still intact. If the canery
corrupted, the system initiates reverse executiggutge the malicious input, handling the attacitead
of simply aborting the program as in existing sckemBYy executing our micro-applications on our
interpreter we are able to show that our approadtahdling security attacks is able to recover more

effectively than aborting the program, which letm®oS attacks.

4. Results

To evaluate the proposed recovery system, we varatero-application that is vulnerable to the
stack-overflow attack. The following shows the Gsien of the application. It simply gets user-pded
input, and stores the input into a 16-byte locdfdruand then echoes the input. Because the ‘g&d’ m
function, like POSIX getstr(), has no boundary direg, any input longer than 16 bytes can overfloe t
local buffer and can tamper the return addressiwiistored in the stack.

void main()

proc_msg();

void proc_msg()
char buf[16];

get_msg(buf);
prn_msg(buf);

The micro-application in C

To execute this application on our interpreter tra@slated this C source into MIPS assembly by

hand. The following shows the important part of tfamslated assembly source.

19 .globl main
20 main: # main has to be a global label

23 jtstll proc_msg # call the function proc_msg

30 .globl proc_msg

31 proc_msg:

32 subi $sp, $sp, 4

33 sw $ra, O($sp) # push $ra to the top of stack

34 addi $s1, $0, Oxcafebabe

35 subi $sp, $sp, 4

36 sw $s1, 0($sp) # push canary value to the stack
37 subi $sp, $sp, 16 # allocate 16 byte buffer

call get_msg to get input

call prn_msg to print output

60 addi $sp, $sp, 16 # adjust stack before return
61 lw $s1, 0($sp)

62 addi $sp, $sp, 4 # pop canary from the top of sta ck
63 addi $s2, $0, Oxcafebabe

64 beq $s1, $s2, Pass # check canary value

68 li $vO, 10 # terminate program

69 syscall

70 Pass:

71 lw $ra, 0($sp)

72 addi $sp, $sp, 4 # pop $ra from the TOS

73 ir $ra # return

The micro-application in MIPS assembly

Once ‘main’ calls ‘proc_msg’, the return addresplished onto the stack and then pushed the
pre-determined canary constant, OXCAFEBABE, is pdsin top of it. To allocate the 16-byte local
buffer, the stack pointer is decremented accorgiflgle 32~37). At this time, the stack will looké the

following.

buf[0...3]
buf{4...7]
buff8...11]
buf[12...15]
canary value (Oxcafebabe)

return address

When attackers overflow the buffer by providingoager message than 16 bytes, they may
tamper with the return address but cannot avoidgiiramthe canary value. By checking the integrity o
the canary value, we can dynamically detect whdttexe is a stack overflow attack. This is the main
idea of StackGuard [17] which we adopted in thigleation. Line 62 through 64 pops the canary from

the stack and checks the sanity. If the canaryevislintact, the return address from the staclsésliuo

return. Otherwise, existing scheme would termitia¢eprogram (line 68~73).

Instead of terminating the program, our schemetigger reverse execution until we reach the
mallicious input. To trigger the reverse executioe,defined a new instruction, ‘reverse’. Line 68,0f
the above example is replaced by ‘reverse’ to stppo reverse-execution recovery mechanism.

We presented three screen-shots below, each ohwhimws the result from a different scenario.
The first screen-shot shows the result when thek staerflow attack succeeds. We can see that the
control flow is tampered by malicious input. The@ed screen-shot shows that the dynamic detection
scheme prevents the attack by terminating the progHowever, we need to restart the program tceserv
further requests from valid users. Finally, thedhicreen-shot shows the result from our recovery
scheme. Instead of terminating the program, thgrpro is executed backward until new input can be

typed again.

b4 xterm -

skimledsimel “A05springs/cschIlrs/demor rmips.pl demol,s
Type meszage: 0123d5678%abodel 2305 0000w 00N %00

You typed, ..

012345678%abodel 23401 2345678%abodel 234

Ha Ha Ha. your computer iz minel !l

Ha Ha Ha. your computer iz minel!l!

Ha Ha Ha. your computer iz minell!

Ha Ha Ha. your computer is mine! !l

Ha Ha Ha. your computer iz mine! !l

Ha Ha Ha. your computer is minel!ll

kimleEsimel “A05springscech9lrs/demor rmips,pl demoZ, s
ype message: 01234567891 2345 =00 x 00 x00 =00

ou typed, ..

1234567891234

anary mi=zs match! Terminate programl

kimlG@simei “~08springscecE9lr-demos [

kimle@simel " 05szprings/c=ch9lr/demor rmips,pl demo3, s
ype message; 01234567891 2 3d5m00 w00k Q0= 00

ou typed, ..

1234567891234

anary mi=z=s match! Eeverse execution!

eversing

nprinting the string:
anary mi=sz=z match! Feverse execution!

nprinting the string: 01234567891234

nprinting the string: You typed,..

5. Discussion
5.1 Improving Recover ability Coverage

Even though our method can prevent immediatekasttiiom occurring, it is still quite possible
that the program will become stuck in a loop, cagisi denial of service. Consider the following

example function behavior:

1. Read string into bufferl

2. Read string into buffer2

3. Perform some operations

4. Verify stack integrity (check canary value)

5. Return from function

In this example, if the buffer overflow was expéatwith buffer2, our security method will recover
properly. The integrity check will fail at stepthe system will reverse back to step 2, and alwsfer2

to be read in again. However, if bufferl was eitptbinstead of buffer2, then the system has noafay
knowing to revert all the way back to step 1. Skstem will revert back to step 2, re-read in m2ffend
fall victim to the same exploit regardless of wisatead in for buffer2. Because this causes the
application to fall into an infinite loop, it isfettively worse than a denial of service which dimp
terminates the program. In falling into an infanibop, the program is using CPU resources thdtdma
used by other applications, and additionally coxdtdbe automatically respawned without a sophitita
process monitor. We will refer to this specifidnerability as datent input vulnerability.

We present both a sophisticated and simple wayldfessing this issue, which can be used

together for maximal security protection. The dsftated method increases the coverage of
vulnerabilities that can be recovered by reversibl@puting, while the simple method reduces thenhar
done by vulnerabilities that penetrate the systestsvery capabilities.

The sophisticated method borrows conceptuallynftaint checking. Taint checking is the
method of marking input as not trusted (tainted}yl propagating the taint flag to any other dataigha
affected by it. For example, if a tainted valuadsled to an untainted value, the result is taintidte
system can then check if a value is tainted bafeneg it in vulnerable situations, such as settivey
program counter to a dynamically computed addréssrder to know how far back for the processor to
reverse, every datum (may be byte, word, cache-lingny sizes have proven successful in taint
checking) needs to maintain which inputs have &fid. When two tagged data are combined, the
result is tagged with the combination of the injags of both data. When an attack is detected, the
processor can reverse back to the earliest inptiptbssibly influenced the exploit, purging itseflfall
the subsequent input (see section 5.3 for a digguas to how this excess purging can be made less
detrimental). We will refer to these input markassags, and refer to data affected by inputiagged
data.

With or without reversible computing, it is quitdeasible to maintain every input that has
affected a datum, so this must be constraineis oltly feasible to retain a small number of thestno
recent inputs for tag propagation. Retaining tmeo%t recent inputs would allow for the successful
purging of an attack that had a latent input vidbdity with 3 or fewer inputs between the malicou
input being received and the exploit detected.rd8gining a small number of the most recently isgat
tagging, such as 3 or 4, all but the most diffieultt complex exploits against latent input vulniitéds
can be recovered. To keep a truncated historyinplat tags must be discarded. This can be done by
indexing inputs by tag offset, and treating thelidg as a shift register. For example, taggireg th
previous 4 inputs would require 4 additional biés gatum, and the most recent input tag would e th
first of the 4 bits. When a new input is receivallifags throughout the memory hierarchy would be
shifted by one bit. This approach allows simplediere combining of tags in an operation, as only a
bitwise OR is required. The main drawback of #pproach is that a signal line to all of the memory
hierarchy is required in the architecture. We hanebeen yet come up with a more effective satutio
that does not have such a signal line requirenmesbine capacity.

Aggressive tagging in the architecture would pdeva conservative approach to purging input.
For example, the program counter (PC) should bgethgvhen an instruction branches based on the

comparison of a tagged value, and the PC's tagsposntially be used to tag all instructions. rif a

exploit is detected with untagged data, then itlddne safe to assume that the malicious input came
earlier than the beginning of the tagged inputonist In this case, the program should abort, aarnot
reverse far enough.

The second and simple method to prevent latent vydnerabilities from being exploited is to
keep a counter for each of the currently taggedtmonly the most recent input if tagging is neéd).
Every time a new input is received from a revedggstem read, the counter for that read is increeaent
If the counter reaches a certain specified threshben the program will be aborted. This wawgnf
attack is too complex for our security method tevent, the attack will do not cause any more haamn t
if reversibility were not utilized. Using a threst only decreases the effectiveness of the raviétgi
slightly; if more malicious messages are beingikackthan legitimate traffic, then the applicatioay
still be frequently aborted. Increasing the thoddivalue can be used to counter this and prewent t
process from being aborted. Interestingly, if ipalar high-volume attack on a service-based oy
is determined to not be a latent input vulnerapdind the administrator does not wish to raise the
threshold value for fear of other latent input \erhbilities, the process can still be preventethfro
aborting. Inserting inert messages, possibly @remneous, into the program’s input would prevast t
counters from continually increasing from malicionessages, thus preventing the program from

aborting.

5.2 0SImplications

Instead of assuming a purely reversible compotarapproach assumes that the reversible
computer has the ability to reverse individual gsses; different processes running simultaneoualy m
be running in different directions. This is tooa¥l the operating system to behave differently when
executing in reverse than it would when executorgvlrd, which is required in order to provide the
functionality to purge malicious inputs. We alss@ame the paradigm discussed by Michael Frank
involving processes recalling output sent to ofitecesses [1]. When a process reverses an oittput,
reverses the execution direction of the processrit the message to until the message is purgectifrat
process. This will be discussed further in seciidh

Given that the operating system kernel is alwaysing in the forward direction, it needs to
have both forward and reverse implementationslaffads services. Both software and hardware
interrupts change the processor to run forward i@t on the corresponding kernel function. To
support the reversal of a kernel function execuiimipe forward direction, a combination of the

instruction set architecture and kernel code mhbtdin the parameters, return values, and state

information from the kernel call when it happenedtie forward direction.

Because each process can be running in eithéorivard or reverse direction, each process must
have its own execution history buffer. Realistigahe history buffers will be finite in lengthg she
process can only reverse execute back to the bhagiohthe buffer. The oldest history data wouéd b
continuously destroyed to make room for the newohysdata. If the process attempts to reverse tiack
a point prior to the start of the history buffdreh the process must be aborted.

5.3 Implied Message Paradigm

We initially considered implementing both a messhgsed and stream-based reversible input
system call. The message-based implementationdweal input line-by-line, while the stream-based
implementation would read input character-by-chi@racWe soon realized that the major framing
(message misalignment) implications that arise wiahof a stream is lost would make purging
malicious input very difficult. Designing a systdrased around messages and events rather thamstrea
is not a too constraining, as Microsoft Windowsaues approach (as opposed to Unix architectures,
which are more stream-based). One major implinatfausing the reversible architecture is that all
applications using these message communicatiortstod®e able to handle the “take-back” of a message
Most systems will support this transparently, asdperating system can throw the targeted process i
reverse to purge it of the message taken back. eMenyvall network protocols and peripherals musb al
support the ability to “take-back” messages.

In systems of higher interdependence, this casohiaessage “take-back” would throw much of
the system into reverse execution until the ednt@svant input was purged, then resume and réams
execution. From a user-interface perspectivealy tve useful to have a separate part of the irterfa
perhaps closely tied to the kernel, dedicatedrterabering input that has been purged. Aslong as i
keeps the transaction information on a per-prodrasis, this interface could resend messages purged
from other applications or machines on the netwdk.allowing the user to manage communications to
the machine, the user could be immediately notifiedny information rejected by almost any type of
error. This would help prevent user frustrationszd by information purged due to errors by allgwin

the user to automatically reenter the data.

6. Conclusion

We have shown that future reversible computingitactures could allow us to more effectively
recover from dynamically detected attacks by préagrDoS scenarios. In addition, we have iderdifie
and addressed some key issues that must be adtesseeal-world system of this type. We presénte

two alternative schemes to more robustly handeelestthat result from different input sources tigtoa
type of taint analysis and/or counters to limit theximum number of reversals per input. We also
analyzed some of the main OS issues and the extcaidnality that must be provided for a reversible
system that is capable of handling multiple proesssmultaneously. Finally, we made a case for a
message-based paradigm that would make things fessible for reversible systems in handling
malicious inputs. It appears that reversible cainguoffers promising ways to recover from various
types of security attacks by allowing us to rec@ficiently and prevent attacks from turning if@0S

situations.

REFERENCES

[1] Michael P. Frank. Reversibility for Efficie@omputing. PhD thesis, Massachusetts Institute of
Technology, 1999.

[2] Carlin J. Vieri. Pendulum: A reversible contpuarchitecture. Master's thesis, MIT Atrtificial
Intelligence Laboratory, 1995.
[3] S. Lewis. Techniques for Efficiently RecandiState Changes of a Computer Environment to

Support Reversible Debugging. Master’s thesisyehsity of Florida, 2001.

[4] T. Akgul and V. J. Mooney. Instruction-levelverse execution for debugging. Technical Report
GIT-CC-02-49, Georgia Institute of Technology, Seplber 2002.

[5] B. Biswas, R. Mall. Reverse execution ofgnaams. ACM SIGPLAN Notices, 34(4). pp 61-69.
1999.

[6] T. Hey. Quantum computing: an introducticBomputing & Control Engineering Journal, 10(3).
pp 105-115. 1999.

[7] H. Buhrman, J. Tromp, P. Vitanyi. Time and &p&8ounds for Reversible Simulation. Proc.
International Conference on Automata, LanguagesPaadgramming, Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 2001

[8] A. Griewank, A. Walther. Algorithm 799: relwe: an implementation of checkpointing for the
reverse or adjoint mode of computational differgtivin. ACM Transactions on Mathematical
Software (TOMS), 26(1). pp 19-45. 2000.

[9] B. A. Kingsbury and J. T. Kline, Job and pess recovery in a UNIX-based operating system. In
Conference Proceedings, Usenix Winter 1989 Tech@ioaference, pages 355-364, San Diego,
CA, January 1989.

[10] M. Russinovich and Z. Segall. Fault-tolerarfior off-the-shelf applications and hardware. 5th?
International Symposium on Fault-Tolerant Computipages 67-71, Pasadena, CA, June 1995.

[11] R. H. B. Netzer and M. H. Weaver. Optimading and incremental reexecution for debugging
long-running programs. In ACM SIGPLAN '94 Conferenan Programming Language Design
and Implementation, pages 313-325, Orlando, FLe 11994.

[12] J. Long W. K. Fuchs and J. A. Abraham. Inmpémting forward recovery using checkpointing in
distributed systems. In 2nd IFIP Working ConfereaneDependable Computations for Critical
Applications, pages 20-27, February 1991.

[13] J. S. Plank, M. Beck, G. Kingsley, and K. Libckpt: Transparent checkpointing under Unix. In
Conference Proceedings, Usenix Winter 1995 Tech@icaference, pages 213-223, January
1995.

[14]

[15]
[16]

[17]

Y. Huang, C. Kintala, and Y-M. Wang. Softwabols and libraries for fault tolerance. IEEE
Technical Committee on Operating Systems and Aatitin Environments, 7(4):5-9, Winter
1995.

J. S. Hall. A reversible instruction set atebture and algorithms. Physics and Computation, pp
128--134, 1994.

P. Bishop. Using Reversible Computing to Ackid-ail-safety. ISSRE 97, IEEE Computer
Society Press, 1997.

C. Cowan, C. Pu, and et al. StackGuard: Autamsdaptive Detection and Prevention of Buffer-
Overflow Attacks. Proc. 7th USENIX Security Con§9B.

